
1. Introduction

1.1 The problem

The context for this paper is the interaction between a �rm that produces and pro-

cesses durable pollution1 and a regulator charged with the tasks of (a) employing a man-

dated technology to process the public stock of pollution, and (b) designing a contract

that induces the �rm to adopt a socially desirable technology for processing its private

pollution stock. We represent the �rm's pollution-related technology in terms of easily

measurable statistical parameters. Although this paper is theoretical in nature, our sparse

and direct, yet exible, conceptualization of the relevant aspects of the �rm should allow

straightforward application of our results to concrete situations.

Given our focus on durable pollution, we postulate the existence of a private pollution

stock and a public pollution stock. We adopt the view that pollution becomes a matter

of social concern only when it is emitted from the �rm's private stock into the regulator's

public stock. Since the �rm is the only producer of pollutants, the public pollution stock

consists entirely of the accumulated emissions from the �rm. In our model, the �rm

bears costs associated with pollution accumulation in its private stock and emission into

the public stock. Consequently, it must operate simultaneously on two margins: (1) the

production of pollutants, and (2) the emission of pollutants. We model the �rm's decision-

making on the second margin taking its decisions regarding production as exogenously

given.

Consider an in�nitely-lived �rm, with discount rate � 2 A, that creates durable

pollution jointly with a private good. At every instant, the �rm chooses the output of

the private good and pollution by selecting the activity level of its production process.

The resulting pollution ows into the �rm's private stock of pollutants.2 At each moment,

the �rm can deal with a unit of private pollution stock in one of two ways: the �rm

1 This refers to pollutants that can accumulate over time. As our model allows pollutants to decay
at arbitrary positive real rates, the only pollutants left out of its ambit are those with an in�nite rate of
decay, i.e., non-durable pollutants that dissipate instantaneously.

2 For example, holding tanks for chemical wastes, y-ash dumps at thermal power plants, and stocks
of spent fuel at nuclear facilities.
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may continue to hold it, which entails an instantaneous holding cost3 h(e) 2 H, or emit

it into the public stock, which entails an emission penalty l paid to the regulator. The

�rm is required to pay the holding cost on a unit of pollutant as long as it stays in the

�rm's private stock, while the emission penalty is a one-time charge that transfers the

responsibility of processing the pollutant from the �rm to the regulator.

The holding cost h(e) is chosen by the �rm via the choice of technology e 2 E = [e0; e1]

at price  (e). The emission penalty l represents the cost incurred by the regulator in im-

plementing the socially mandated standard of emission treatment. Given this perspective,

l reects the social desire to mitigate the negative externalities created by the public pol-

lution stock. We take l as exogenously given.

We focus on the trade-o� between internal processing and emission by assuming away

the possibility of adjusting the activity level.4 This is done by representing the activity

levels by an exogenously given stochastic process determined by parameters x, � and �.

The activity process determines x, � and �2 as the mean, drift and variance, respectively,

of the �rm's internal pollution stock process.5 We amplify this description in Section 2.1.

Given the parameters described above, let v(x; �; �; �) be the value of the �rm's op-

erations in the private good market, let V (x; �; �) be the value of the �rm to consumers,

and let C(x; �; �; h(e); 0; l; �) be the cost to the �rm of implementing the optimal policy

of managing its private pollution stock. We take x, �, � and l as exogenously given and

common knowledge, and therefore, suppress them in our expressions. Therefore, �rm �'s

market value prior to regulation is v(�), its value to consumers is V , and the cost of opti-

mally managing its private pollution stock is c(�; e) = C(�; h(e)). Other variations of this

setting can be formulated by substituting � with x, � or �.

In our study of the contracting problem, we refer to A as the �rm's type space and

3 We use \holding cost" interchangeably with \processing cost".

4 There are situations in which supply adjustment may be ruled out. For instance, supply might
be governed by inexible long-term contracts. Alternatively, the cost of managing pollution might be
insigni�cant relative to the pro�tability of the �rm's private good, so that the �rm might have no reason
to adjust its activity level in response to the regulatory contract.

5 A negative drift represents a natural rate of decay of the pollutant.
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E � < as the outcome space. A pair hA; (e; T )i is called a direct mechanism with (e; T ) :

A! E � < as the outcome function. Firm �'s utility from outcome (e; T ) 2 E �< is

u(�; e; T ) = v(�)� c(�; e)�  (e) + T (1:1:1)

Given the direct mechanism hA; (e; T )i, �rm �'s utility from reporting type �0 is U(�; �0) =

u(�; e(�0); T (�0)).6

We consider mechanisms that induce participation and self-selection by all types. The

individual rationality (IR) and incentive compatibility (IC) constraints that characterize

such contracts are: for all �; �0 2 A

U(�; �) � 0 and U(�; �) � U(�; �0) (1:1:2)

The regulator's welfare is

W (�; e; T ) = V + u(�; e; T )� (1 + �)T = V + v(�)� c(�; e)�  (e)� �T (1:1:3)

where 1+�, with � 2 <++, is the social shadow value per unit of payment by the regulator

to the �rm.

If technology choice e is contractible and � is known to the �rm but not known to the

regulator, then we seek to design a direct mechanism (e; T ) : A! E �<, such that (e; T )

maximizes the expectation of (1.1.3) subject to (1.1.2).

This framework can be interpreted as the regulator making the �rm responsible for

processing the private and public pollution stock in exchange for a transfer from the regula-

tor to the �rm. While the �rm is required to process the public pollution in the mandated

manner, it is free to choose the internal processing technology. The regulator designs the

contract to provide incentives to the �rm to adopt the socially desirable technology, which

is determined endogenously by the model.

1.2 Firm's cost function

6 We restrict attention to direct mechanisms without loss of generality because of the revelation prin-
ciple (see Fudenberg and Tirole, 1991). Henceforth, we refer to outcome functions as contracts.
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Of the framework described above, we take V , v and  as given. The derivation of

the �rm's cost function c will take into account the dynamic and stochastic nature of the

�rm's operational environment with respect to pollution management.

The necessity of a dynamic speci�cation is dictated by our problem. In our model,

the �rm has to choose between accumulating the pollution it creates and emitting it. This

choice is of interest only if the costs of the alternative actions are di�erent in nature.

A natural di�erence suggested by the alternatives themselves is that accumulating the

pollution imposes a cost in perpetuity while emitting it implies a one-time cost. Given

this cost structure, the �rm faces a dynamic problem whose solution at every instant will

depend on the past, via the inherited private pollution stock, and expectations about the

future evolution of the stock. A sensible speci�cation of this problem requires a dynamic

environment that generates the actual and expected evolution of the pollution stock.

Of the variables that determine pollution, some are controlled by the �rm, such as the

choice of technology and the supply decision, and some are not, such as commodity prices,

the quality of delivered inputs, and the e�cacy of the processing technology. The �rm may

protect itself against some of these shocks through forward and contingent contracts, but to

the extent that markets and contracts are incomplete, the �rm must perceive the residual

shocks as random events. The stochastic nature of our model is intended to capture this

residual uncertainty.

1.3 The literature

Using the terminology of Xepapadeas (1997), this paper is concerned with the problem

of regulating \point-source stock pollution", i.e., the pollutant is durable and the emitter's

identity and the quantity of emissions are perfectly observable.7 Our approach to this

problem may be described as a multi-directional extension of the dynamic emission choice

model (ECM) presented in Sections 1 to 3 of Chapter 3 in Xepapadeas (1997).8

7 The techniques used to analyze the model are standard. Our derivation of the �rm's cost function
relies on stochastic control theory (see Harrison and Taylor, 1978), while the derivation of the optimal
regulatory contract is an application of the theory of optimal mechanism design (see Fudenberg and
Tirole, 1991).

8 The ECM is a representative of many similar models, including those in Brock (1977), d'Arge and
Kogiku (1973), Forster (1973), Keeler et al. (1971), M�aler (1974), Plourde (1972), and Xepapadeas (1992).
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In the ECM, the public stock of pollution is the state variable and the emission rate is

the control variable. Given the control trajectory � and the state trajectory S, the regula-

tor's welfare is w(�; S; �), where � is a �rm-speci�c parameter that is common knowledge.

The law of motion for the state imposes a dynamic constraint in the form of a di�eren-

tial equation, say L(�; S) = 0. The regulator's optimal control trajectory �(�) maximizes

w(�; S; �) subject to the constraint L(�; S) = 0. With appropriate speci�cations, this is a

standard optimal control problem.

Usually, the polluting �rms and the regulator are distinct entities, with the emissions

trajectory being chosen by the �rms and not the regulator. In such situations, can the

regulator induce a competitive �rm � to choose �(�)? It is straightforward to show that

the regulator can decentralize �(�) by imposing a �rm-speci�c time-varying Pigouvian tax

�(�), whose value at any moment is the social shadow cost of the pollution stock at that

moment. This implementation of �(�) relies on three substantive features of the ECM: (a)

the regulator knows �, (b) the �rm's decision problem at each instant is static, and (c)

the �rm is a price-taker. Our model di�ers from the ECM in all these aspects.

First, � is not common knowledge in our model. Consequently, it is impossible for the

regulator, who does not know �, to implement the socially optimal emissions trajectory

via appropriate Pigouvian taxes that are conditioned on �.

Second, while the ECM identi�es the creation of pollutants with emissions, thereby

leading to a static emission problem for the �rm, our model speci�es a dynamic emission

problem for the �rm, as outlined in Section 1.2.

1.4 Plan of paper and results

Section 2 of this paper answers the following question: given the �rm's operational

environment and its pollution processing technology, what is the optimal policy for the

�rm with respect to the decision whether to emit pollution or to process it internally?

This question is answered in Theorem 2.3.19 by constructing a stochastic dynamic pro-

gramming problem whose solution yields the �rm's optimal policy and cost as functions

of technological and regulatory parameters.

Section 3 characterizes the optimal regulatory contracts subject to implementability

constraints. The cost function derived in Section 2 is used to de�ne the incentive constraints

in this section. We consider two contracting problems, one with a �nite number of types
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and the other with a continuum of types. The optimal contract for the former problem is

stated in Theorem 3.3.13, while the solution of the latter problem is contained in Theorem

3.4.15.

Section 4 concludes the paper with suggestions for extensions of the work reported in

this paper.

2. The �rm's cost function

2.1 Formal setting

In this section we introduce the formalism and notation that will be used throughout

this paper. N denotes the set of natural numbers, < (resp. <+, <++) the set of real (resp.

nonnegative real, positive real) numbers, D and D2 are the �rst order and second order

di�erential operators respectively, � denotes a jump of a real-valued variable, and h:; :i

denotes the predictable quadratic variation process (Elliott, 1982, Chapter 10). We make

the following assumptions regarding the notation used in Section 1.1.

Assumption 2.1.1. The following restrictions hold throughout the paper.

(a) H, E and A are nonempty subsets of <++,

(b) x 2 <+; l 2 <++; �; � 2 < with � 6= 0.

Let 
 be the set of continuous real-valued functions with domain <+. The Wiener

process W = (Wt)t2<+ is the coordinate process on the stochastic base (
;F ; (Ft); Q),

where (Ft) is a �ltration on 
, �(
S
t2<+

Ft) � F , and Q is the unique (Wiener) measure on

(
;F) under whichW is a Wiener process with zero drift, unit variance, and starting state 0

Q-a.s. We assume, without loss of generality, that (Ft) is the right-continuous augmentation

of the natural �ltration generated by W , and that F0 includes all the Q-negligible events

in F . All processes in this paper are de�ned with reference to (
;F ; (Ft); Q).

The �rm's production technology is speci�ed by the data ff ;x; �; �g. The �rm's

activity process is a = (at); activity level at at time t produces goods f(at) and causes an

uncontrolled variation in the �rm's private pollution stock.

The �rm's private pollution stock process is Z = (Zt), with Zt = Xt + Rt � Lt.

X = (Xt), with Xt = x+�t+� ln(at), is the reference process. The variation in X at time

t is interpreted as the uncontrolled variation in Z brought about by activity level choice
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at. This variation can be positive or negative as fresh production increases the stock but

autonomous decay of the stock reduces it; the autonomous decay at time t can have a

deterministic as well as a random component. Rt (resp. Lt) represents the total controlled

additions to (resp. deductions from) the stock upto time t; variations of Z on account of

variations in R and L are called controlled variations. When R and L stay unchanged,

variations in Z mimic variations in the reference process X.

De�nition 2.1.2. A control policy is a pair of real-valued processes (R;L) = (Rt; Lt)t2<+ ,

de�ned on the stochastic base (
;F ; (Ft); Q), with sample paths that are non-negative,

non-decreasing and right-continuous.

We specify activity levels exogenously by at = eWt . Therefore, the uncontrolled

variations in the pollution stock match the variations of Xt = x + �t + �Wt. X is the

Brownian motion on the stochastic base (
;F ; (Ft); Q) with mean x, drift � and variance

�2. The properties of Brownian motion imply that the statistical properties of future

variations in X are not a�ected by the current level of X. Since W is a continuous

process, so is X.

Given X, Z may take negative values. This is not a consequence of X being able to

take negative values. Even if X is chosen to be a positive process, such as the geometric

Brownian motion, Z can become negative if L reaches a positive level. Given our de�nition

of Z, we can ensure that it stays non-negative by manipulating the control policy (R;L)

appropriately. We force the �rm to choose the controls appropriately by specifying the

instantaneous processing cost of the pollution stock x as

H(x) =

�
hx; if x � 0
1; if x < 0

where h > 0. This implies that a cost-minimizing �rm will never want the stock to become

negative. In order to avoid a negative pollution stock, two conditions have to be met.

First, X has to be a continuous process; otherwise, Z might involuntarily jump down from

a positive to a negative level. Secondly, if Z is at 0 and X is falling, the �rm should be able

to raise R su�ciently to o�set the falling X. We satisfy the �rst requirement by specifying

X as the Brownian motion, and show by construction that the second requirement can be

satis�ed.

The unit cost of instantaneously decreasing (resp. increasing) the stock is l (resp. 0);

i.e., the price at which a unit of pollution can be sold to the regulator is �l and the price
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at which pollution can be bought from the regulator is 0. Consequently, the �rm `buying'

pollution is a purely technical ruse without economic interest and it has no e�ect on the

�rm's cost function. Technically, this ploy will turn out to be equivalent to the imposition

of a reecting barrier on Z at 0.

R and L are decomposed into continuous and jump parts as follows. Let T0 = 0.

Given a stopping time Tn, de�ne Tn+1 = infft > Tn j Zt 6= Zt�g; thus, Tn is the random

time of the n-th jump in the value of Z. Associate with Tn the random variable �ZTn =

ZTn � ZTn� 2 FTn ; this describes the size of the jump in the value of Z at Tn. De�ne

�RTn = �ZTn _ 0 and �LTn = �(�ZTn ^ 0). �RTn (resp. �LTn) is the size of the

upward (resp. downward) jump of Z at Tn; it is equal to 0 if Z jumps downwards (resp.

upwards) at Tn. Given t 2 <+, let N(t) = supfn 2 N [f0g j Tn � tg; this random variable

counts the number of jumps of Z upto time t. Thus,
PN(t)

n=0 �RTn (resp.
PN(t)

n=0 �LTn) is

the sum of the upwards (resp. downwards) jumps in Z and R (resp. L) upto time t. These

de�nitions allow us to decompose R and L into continuous and jump parts as follows:

Rt = �t +

N(t)X
n=0

�RTn and Lt = �t +

N(t)X
n=0

�LTn

where �t and �t are the continuous components of Rt and Lt respectively.

De�nition 2.1.3. A control policy (R;L) is said to be feasible if

(a) Q
�
\t2<+f! 2 
 j (Xt +Rt � Lt)(!) � 0g

�
= 1,

(b) Q (f! 2 
 j limn"1 Tn(!) =1g) = 1, and

(c) limt"1Ee��t(Xt +Rt � Lt) = 0.

Condition (a) requires that the stock process Z should be nonnegative almost surely;

(b) requires that the number of jumps of Z in a bounded period be �nite almost surely;

(c) is a regularity condition. We note the following facts. As R and L are non-decreasing,

they are of bounded variation; therefore, so is R � L. As W is a continuous martingale

and R � L is of bounded variation, Z is a semimartingale (Elliott, 1982, Chapter 12).

Given that all processes in this paper are adapted to (Ft) and right-continuous, they are

progressively measurable (Elliott, 1982, Theorem 2.32).

2.2 Basic lemmas

The following lemma is a consequence of the basic change-of-variable formula of

stochastic calculus. It will be used in Section 2.3 to characterize the cost function.
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Lemma 2.2.1. Let � = (�2=2)D2 + �D � �I. If

� 2 C2(<+;<) and E

Z
(0;t]

ds e�2�s[D�(Zs)]
2 <1

then

Ee��t�(Zt) = �(x) + E

"Z
(0;t]

e��sD�(Zs)d(�� �)s +

Z
(0;t]

ds e��s��(Zs)

+

N(t)X
n=0

e��Tn��(Z)Tn

#

The cost of implementing a control policy (R;L) over the period [0; t] is

Ct(R;L;x; �; �; h; 0; l; �) = h

Z
[0;t]

ds e��s(Xs + Rs � Ls) + l

Z
[0;t]

e��sdLs

The cost of implementing (R;L) over <+ is

C1(R;L;x; �; �; h; 0; l; �) = lim sup
t"1

Ct(R;L;x; �; �; h; 0; l; �)

Lemma 2.2.2. Given the parameters (x; �; �; h; 0; l; �),

EC1(R;L;x; �; �; h; 0; l; �) =
hx

�
+
h�

�2
+EC1(R;L;x; �; �; 0; h=�; l� h=�; �)

This means the problem of specifying (R;L) to minimize EC1(R;L;x; �; �; h; 0; l; �)

is equivalent to the problem of specifying (R;L) to minimize EC1(R;L;x; �; �; 0; h=�; l�

h=�; �). Consider an alternative to the given method of costing: when a unit enters the

stock, it is charged its in�nite horizon processing cost h=� and when it leaves the stock,

it is charged the unit cost of leaving, l, less the implicit saving in the processing cost h=�.

Lemma 2.2.2 implies that the two methods of costing are identical, modulo a constant.

De�nition 2.2.3. A feasible control policy (R;L) is said to be optimal if

EC1(R;L;x; �; �; h; 0; l; �)� EC1(R0; L0;x; �; �; h; 0; l; �)

for every feasible control policy (R0; L0). If (R;L) is an optimal control policy, let

C(x; �; �; h; 0; l; �) = E0C1(R;L;x; �; �; h; 0; l; �)

2.3 Optimal policy and the cost function

Lemma 2.3.1 characterizes a lower bound on the cost of implementing a feasible control

policy. We shall go on to construct a control policy whose cost attains this lower bound,

implying that it is an optimal policy. Theorem 2.3.19 states the optimal control policy

and the resulting cost function.
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Lemma 2.3.1. (Optimality criterion) Suppose � : <+ ! < is such that

(a) � 2 C2(<+;<),

(b) �� � D� � l � �, and

(c) �� � 0.

If (R;L) is a feasible control policy, then �(x) � EC1(R;L;x; �; �; 0; �; l� �; �) for every

x 2 <+.

Given S > 0, let f(:;S) : <+ ! < be such that

Df(0;S) = �� Df(S;S) = l � � and �f(x;S) = 0 (2:3:2)

for every x 2 (0; S). Given S 2 <++, and f(:;S) that solves (2.3.2), de�ne F (:;S) : <+ !

< by

F (x;S) =

�
f(x;S); if x 2 [0; S]
f(S;S) + (l� �)(x� S); if x > S

(2:3:3)

The roots of the characteristic polynomial of �f(:;S) are �1 = �� �  < 0 and �2 =

�� +  > 0, where

� = �=�2 and  = (�2 + 2�=�2)1=2

Given S > 0, the unique solution of (2.3.2) is

f(x;S) = ae�1x + be�2x (2:3:4)

where

a =
�eS + (l� �)e�S

(� + )(eS � e�S)
and b =

�e�S + (l � �)e�S

( � �)(eS � e�S)

It is clear from (2.3.2) and (2.3.3) that F (:;S) and DF (:;S) are continuous. Clearly,

D2F (x;S) =

�
D2f(x;S); if x 2 (0; S)
0; if x 2 (S;1)

Clearly, D2F (:;S) is continuous at S if and only if limx"S D
2F (x;S) = 0. Routine cal-

culations reveal that this condition is satis�ed if and only if S > 0 solves the following

equation:

(l� �)
h
( + �)e(��)S + ( � �)e(�+)S

i
= �2� (2:3:5)

Lemma 2.3.6. If � > l, then there exists a unique S > 0 that solves (2.3.5). (2.3.5) has

no solution if � � l.

The next result shows that F de�ned by (2.3.3) satis�es assumptions (a), (b) and (c)

of Lemma 2.3.1.
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Lemma 2.3.7. Suppose � > l, S is the unique solution of (2.3.5), f(:;S) is de�ned by

(2.3.4), and F (:;S) is de�ned by (2.3.3). Then,

(A) F (:;S) 2 C2(<+;<),

(B) �� � DF (:;S) � l � �, and

(C) �F (:;S) � 0.

Combining Lemmas 2.3.1 and 2.3.7, we immediately have

Lemma 2.3.8. Suppose � > l, S is the unique solution of (2.3.5), f(:;S) is de�ned by

(2.3.4), and F (:;S) is de�ned by (2.3.3). Then,

F (x;S) � EC1(R;L;x; �; �; 0; �; l� �; �) (2:3:9)

for every x 2 <+ and feasible control policy (R;L).

We now construct a feasible control policy (R;L) such that equality holds in (2.3.9).

By Lemma 2.3.8, this policy will be an optimal control policy.

Let S > 0 be given by (2.3.5). Consider the equations: for every t 2 <+,

Rt = sup
�
[Lu �Xu]

+ j u 2 [0; t]
	

(2:3:10a)

and

Lt = sup
�
[Xu +Ru � S]+ j u 2 [0; t]

	
(2:3:10b)

The policy implied by (2.3.10) amounts to imposing a lower reecting barrier on Z at 0 and

an upper reecting barrier on Z at S. Informally, L (resp. R) grows only at random times

when Z hits the upper (resp. lower) barrier S (resp. 0) and X is rising (resp. falling),

with the rise in L (resp. R) being just su�cient to exactly o�set the growth (resp. decay)

of X.

Lemma 2.3.11. Suppose S > 0.

(A) If (R;L) is a pair of processes that satisfy (2.3.10) for every t 2 <+, then (R;L)

is a continuous feasible control policy with R0 = 0 and L0 = [X0 � S]+.

(B) There exists a unique solution of (2.3.10), say (R;L).

(C) Suppose � > l, S > 0 is the unique solution of (2.3.5), f is de�ned by (2.3.2), F

is de�ned by (2.3.3), and (R;L) is the unique solution of (2.3.10) given S. Then, for every

x 2 <+,

EC1(R;L;x; �; �; 0; �; l� �; �) = F (x)
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Lemmas 2.3.8 and 2.3.11(C) yield the �rm's cost function when � > l. We now turn

to the problem when � � l.

Let � : < ! < be such that

D�(0) = �� lim
x"1

�(x) = 0 lim
x"1

D�(x) = 0 and ��(x) = 0 (2:3:12)

for every x 2 <+. It is easy to check that the unique solution of (2.3.12) is

�(x) =
�

� + 
e�(�+)x (2:3:13)

The following lemma notes that � satis�es the assumptions of Lemma 2.3.1.

Lemma 2.3.14. Suppose � � l and � is de�ned by (2.3.13). Then,

(A) � 2 C2(<+;<),

(B) �� � D� � l � �, and

(C) �� � 0.

Combining Lemmas 2.3.1 and 2.3.14 yields

Lemma 2.3.15. Suppose � � l and � is de�ned by (2.3.13). Then,

�(x) � E0C1(R;L;x; �; �; 0; �; l� �; �) (2:3:16)

for every x 2 <+ and feasible control policy (R;L).

We now construct a feasible policy (R;L) such that equality holds in (2.3.16). This

policy will be the optimal policy when � � l. Consider the equations

Rt = sup
�
[�Xu]

+ j u 2 [0; t]
	

and Lt = 0; t 2 <+ (2:3:17)

The policy implied by (2.3.17) amounts to imposing a lower reecting barrier on Z at 0

and no upper barrier. The proof of the following result mimics that of Lemma 2.3.11.

Lemma 2.3.18. (A) If (R;L) is a pair of processes that satisfy (2.3.17) for every t 2 <+,

then (R;L) is a continuous feasible control policy with (R0; L0) = (0; 0).

(B) There exists a unique solution of (2.3.17), say (R;L).

(C) Suppose � � l, � is de�ned by (2.3.14) and (R;L) is the unique solution of (2.3.17).

Then, for every x 2 <+,

EC1(R;L;x; �; �; 0; �; l� �; �) = �(x)

Lemmas 2.3.15 and 2.3.18(C) yield the �rm's cost function when � � l. Combining

Lemmas 2.2.2, 2.3.11 and 2.3.18, we have
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Theorem 2.3.19. Given parameters (x; �; �; h; 0; l; �), the unique optimal control policy

when l < h=� is given by (2.3.10) and the unique optimal control policy when l � h=� is

given by (2.3.17), with cost function

C(x; �; �; h; 0; l; �) =
hx

�
+
h�

�2
+

�
F (x); if h > l�
�(x); if h � l�

(2:3:20)

We conclude this section by noting some simple properties of the optimal control policy

and the corresponding cost function. First, the feasibility of a control policy (R;L) is in-

dependent of the parameters (h; l; �); it is entirely dependent on the parameters (x; �; �).

Secondly, the nature of the optimal policy, i.e., whether the pollution stock is bounded

above by a reecting barrier at some �nite S or not, is determined entirely by the param-

eters (h; 0; l; �).

Let C(x; �; �; h; 0; l; �) = EC1(R;L;x; �; �; h; 0; l; �). If �0 > � > 0, then (R;L)

continues to be a feasible control policy. Consequently,

C(x; �; �; h; 0; l; �) = EC1(R;L;x; �; �; h; 0; l; �)

� EC1(R;L;x; �; �; h; 0; l; �0)

� C(x; �; �; h; 0; l; �0)

i.e., C is decreasing in �. By analogous arguments, it follows that C is increasing in

h and l. Given t > 0, let C(x; �; �; th; 0; tl; �) = EC1(R;L;x; �; �; th; 0; tl; �). As

C1(R;L;x; �; �; th; 0; tl; �) = tC1(R;L;x; �; �; h; 0; l; �), we have

C(x; �; �; th; 0; tl; �) = tEC1(R;L;x; �; �; h; 0; l; �)� tC(x; �; �; h; 0; l; �) (2:3:21)

By a similar argument, C is super-additive in (h; l):

C(x; �; �; h+ h0; 0; l+ l0; �) � C(x; �; �; h; 0; l; �)+ C(x; �; �; h0; 0; l0; �) (2:3:22)

Combining (2.3.21) and (2.3.22), we see that C is concave in (h; l).

3. Regulation problem

3.1 Formulation

We employ the notation and formalism outlined in Section 1.1. The �rm's value prior

to environmental regulation is given by v : A ! <. Let h : E ! H yield the processing

cost as a function of technology. De�ne c : A � E ! < by c(�; e) = C(�; h(e)). Let

 : E ! < generate the price paid by the �rm for technology.
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Assumption 3.1.2. h and  are twice continuously di�erentiable on the interiors of their

domains with

(a) Dh < 0 and D2h > 0,

(b) D > 0 and D2 > 0,

(c) supe2E u(�; e; 0) > 0 for every � 2 A,

(d) D122c < 0,

(e) Dv �D1c > 0, and

(f) D22c+D2 > 0.

(a) means that the unit processing cost decreases with greater technology but tech-

nology faces diminishing returns in terms of cost savings. (b) implies that the cost of

technology acquisition increases at an increasing rate with technology. (c) and (e) imply

the satisfaction of second order conditions.

3.2 Preliminaries

The �rm's utility function u : A� E � < ! < is given by (1.1.1) and the regulator's

welfare function W : A� E � < ! < is given by (1.1.3). The IR and IC constraints that

induce participation and self-selection by all types are given by (1.1.2). If truth-telling is

incentive compatible, then the regulator's welfare can be written as

W (�; e(�); T (�)) = V +u(�; e(�); 0)��T (�) = V +(1+�)u(�; e(�); 0)��U(�; �) (3:2:1)

The following is a characterization of contracts that satisfy the incentive compatibility

conditions for all types.

Lemma 3.2.2. Given contract (e; T ) and D12c > 0 (resp. D12c < 0),

U(�; �) � U(�; �0); 8� 2 A; 8�0 2 A

i�. D2U(�; �) = 0 for almost every � 2 A and e is non-increasing (resp. non-decreasing).

We now consider two special regulatory regimes. First, consider the regime in which

the �rm pays l for each emitted unit of pollution without a transfer. Consequently, �rm

� selects technology e 2 E to maximize u(�; e; 0) subject to the constraint u(�; e; 0) � 0.
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Assuming the optimal choice e(�) 2 (e0; e1) and u(�; e(�); 0) > 0, the following �rst order

condition must hold:

D2c(�; e(�)) +D (e(�)) = 0 (3:2:3)

Assumption 3.1.2 implies the second order condition. Firm �'s utility is u(�; e(�); 0) and

the regulator's welfare is W (�; e(�); 0) = V + u(�; e(�); 0). It follows from (3.2.3) that

De(�) =
�D12c(�; e(�))

D22c(�; e(�)) +D2 (e(�))

Therefore, if D12c > 0 (resp. D12c < 0), then De < 0 (resp. De > 0).

Alternatively, suppose the regulator has complete information. Given �, the regula-

tor chooses a constant contract (e; T ) to maximize W (�; e; T ) subject to the individual

rationality constraint u(�; e; T ) � 0. The optimal contract for type �, say (e�; T�), is

characterized by the conditions

T� =  (e�) + c(�; e�)� v(�) and D2c(�; e�) +D (e�) = 0 (3:2:4)

The second condition is identical to (3.2.3), which implies that e� = e(�). The �rst

condition amounts to setting

U(�; �) = u(�; e�; T�) = u(�; e(�); T�) = u(�; e(�); 0) + T� = 0

which implies T� = �u(�; e(�); 0) < 0. The regulator's welfare is

W (�; e�; T�) = V + (1 + �)u(�; e(�); 0) > W (�; e(�); 0)

as u(�; e(�); 0) > 0. Consequently, social welfare is higher under the second regime. The

transfer from the �rm to the regulator serves to eliminate the entire rent that accrued to

the �rm in the �rst regime.

3.3 Contracting under incomplete information: discrete case

Assumption 3.3.1. �; � 2 A such that � < �, and F is a distribution function on A

such that suppF = f�; �g and F (�) = p 2 (0; 1).

In this section, the �rm's type is � 2 f�; �g, which is private information, and F

is the regulator's belief about �, which is common knowledge. Consider an equilibrium
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in which the regulator o�ers a contract f(e; T ); (e; T )g, �rm � chooses (e; T ) and �rm �

chooses (e; T ). In such an equilibrium, the following conditions must hold:

u(�; e; T ) � 0 (3:3:2)

u(�; e; T ) � 0 (3:3:3)

u(�; e; T ) � u(�; e; T ) (3:3:4)

u(�; e; T ) � u(�; e; T ) (3:3:5)

(3.3.2) and (3.3.3) are the IR constraints for the two types, and (3.3.4) and (3.3.5) are

their IC constraints. De�ne � : E ! < by

�(e) = u(�; e; 0)� u(�; e; 0) =

Z �

�

d� [Dv(�)�D1c(�; e)]

It follows that D� = �
R �
�
d�D12c(�; :) and D

2� = �
R �
�
d�D122c(�; :). Assumption 3.1.2

implies that � > 0 and D2� > 0. �(e) is the rent earned by type � from technology e.

Given U = u(�; e; T ) and U = u(�; e; T ), constraints (3.3.2) to (3.3.5) can be re-written as

U � 0 (3:3:6)

U � 0 (3:3:7)

U � U � �(e) (3:3:8)

U � U +�(e) (3:3:9)

The regulator's optimal contract f(U; e); (U; e)g maximizes

p [(1 + �)u(�; e; 0)� �U ] + (1� p)
�
(1 + �)u(�; e; 0)� �U

�
(3:3:10)

subject to constraints (3.3.6) to (3.3.9).

(3.3.6) and (3.3.9) imply U � U +�(e) � �(e) � 0. Thus, (3.3.7) is satis�ed if (3.3.6)

and (3.3.9) are satis�ed. If (3.3.7) is binding, then 0 � U + �(e), i.e., U � ��(e) < 0,

which violates (3.3.6). Thus, U > 0. If U > 0 at the optimum, then both U and U can

be reduced by � > 0, su�ciently small, without violating constraints (3.3.6) to (3.3.9). As

this increases the value of the objective, we have a contradiction. Consequently, at the
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optimum, we must have U = 0 and �(e) � U � �(e). Clearly, at the optimum, we must

have U = �(e). This simpli�es the regulator's problem to: choose e and e to maximize

p(1 + �)u(�; e; 0) + (1� p) [(1 + �)u(�; e; 0)� ��(e)]

The �rst-order conditions characterizing the optimal choices are

D2c(�; e) +D (e) = 0 (3:3:11)

and

D2c(�; e) +D (e) = �
1� p

p

�

1 + �
D�(e) (3:3:12)

Suppose D12c > 0. Then, D� < 0 and we have

D2c(�; e) +D (e) > D2c(�; e) +D (e) > 0 = D2c(�; e) +D (e)

Since D22c(�; :)+D
2 (:) > 0, we have e > e. Comparing (3.3.11) and (3.3.12) with (3.2.3),

we have e = e� and e > e�, i.e., relative to the full information choices, type �'s choice

is not distorted while type �'s choice is distorted upwards. We collect these facts in the

following result.

Theorem 3.3.13. Given D12c > 0 (resp. D12c < 0), and Assumptions 3.1.2 and 3.3.1,

f(U; e); (U; e)g is the optimal contract, where e and e are characterized by (3.3.11) and

(3.3.12) respectively, U = �(e) and U = 0. The implied transfers are T = �(e) + c(�; e) +

 (e) � v(�) and T = c(�; e) +  (e) � v(�). Moreover, e = e� < e� < e (resp. e = e� >

e� > e).

3.4 Contracting under incomplete information: continuum case

Assumption 3.4.1. F is a distribution function on A with a positive density f , and

DG(�) < 0 where G(�) = [1� F (�)]=f(�).

DG(�) < 0 is equivalent to f(�)=[1� F (�)] increasing in �. Many familiar distribu-

tions satisfy this monotone hazard rate condition (Bagnoli and Bergstrom, 1989). Suppose

the �rm's type is � 2 A, which is private information, and F is the regulator's belief about

�, which is common knowledge. We wish to characterize an equilibrium in which the
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regulator o�ers a contract (e; T ) and �rm � 2 A chooses to participate and self-selects by

choosing (e(�); T (�)). Suppose D12c > 0.

If (e; T ) induces self-selection, then the regulator's welfare from type � is given by

(3.2.1). Using (3.2.1) and setting U(�) = U(�; �), the regulator's expected welfare isZ �1

�0

d� f(�) [V � (1 + �) (c(�; e(�)) +  � e(�)� v(�))� �U(�)] (3:4:2)

Therefore, we can change variables and consider contracts (e;U) instead of (e; T ). The IR

constraints can be written as: for every � 2 A

U(�) � 0 (3:4:3)

By Lemma 3.2.2, truth-telling is incentive compatible if and only if, for almost every � 2 A,

D2U(�; �) = 0 (3:4:4)

and

De(�) � 0 (3:4:5)

(3.4.4) amounts to

DU(�) = D1U(�; �) = D1u(�; e(�); T (�)) = Dv(�)�D1c(�; e(�)) (3:4:6)

Condition (3.4.5) can be written as

De(�) = �y(�) and y(�) � 0 (3:4:7)

Assumption 3.1.4 and (3.4.6) imply that DU(�) > 0. Consequently, the IR constraint

(3.4.3) can be replaced by

U(�0) = 0 (3:4:8)

It follows that the optimal contract (e;U) will solve the Lagrange optimal control problem

of maximizing (3.4.2) subject to (3.4.6), (3.4.7) and (3.4.8).

We shall treat U and e as state variables, with costate variables � and � respectively,

and y 2 <+ as the control variable. Suppose (y;U ; e) solves the optimal control problem

with e(A) � IntE. De�ne the Hamiltonian function

H(�;U ; e; �; �; y)

= f(�)
�
V � (1 + �)

�
c(�; e) +  (e)� v(�)

�
� �U

�
+ �[Dv(�)�D1c(�; e)]� �y
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Applying Pontryagin's theorem (Cesari, 1983, Theorem 5.1.i), there exists an absolutely

continuous function (�; �) : A! <2 such that

D�(�) = �D2H(�;U(�); e(�); �(�); �(�); y(�)) = �f(�) (3:4:9)

and

D�(�) = �D3H(�;U(�); e(�); �(�); �(�); y(�))

= f(�)(1 + �) [D2c(�; e(�)) +D � e(�)] + �(�)D12c(�; e(�)) (3:4:10)

for almost all � 2 A. Since U(�1), e(�0) and e(�1) are unrestricted, we have the transver-

sality conditions

�(�1) = 0 �(�0) = 0 �(�1) = 0 (3:4:11)

Combining (3.4.9) and (3.4.11) we have

��(�) = �(�1)� �(�) =

Z �1

�

dxD�(x) = �

Z �1

�

dx f(x) = �[1� F (�)] (3:4:12)

Furthermore, y(�) maximizes H(�;U(�); e(�); �(�); �(�); y) subject to the constraint y �

0 for almost all � 2 A.

Regime 1.

Let � 2 Int (A � y�1(0)), i.e., y(�) > 0. It follows that there exists � > 0 such that

y(�0) > 0 for every �0 2 (�� �; �+ �). Then �(�0) = 0 for every �0 2 (� � �; � + �), i.e.,

D�(�) = 0. It follows from (3.4.10) and (3.4.12) that

D2c(�; e(�)) +D � e(�) =
�

1 + �
G(�)D12c(�; e(�)) (3:4:13)

(3.4.13) implicitly de�nes e(�) and (3.4.6) determines U(�). It follows from (3.4.13) that

De(�) =
�G(�)D112c(�; e(�)) + [�DG(�)� (1 + �)]D12c(�; e(�))

(1 + �)[D22c(�; e(�)) +D2 � e(�)]� �G(�)D122c(�; e(�))
= �y(�) < 0

To sum up, in Regime 1, U is non-negative and increasing, � is negative and increasing, e

is positive and decreasing, and � is zero.

Regime 2.
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Let � 2 y�1(0), i.e., De(�) = �y(�) = 0. Let

�0 = sup(A� y�1(0)) \ [�0; �] and �00 = inf(A� y�1(0)) \ [�; �1]

By de�nition, there exists a sequence (�n) in (A� y�1(0))\ [�0; �] such that limn"1 �n =

�0. By de�nition, y(�n) > 0 for every n 2 N . It follows that �(�n) = 0 for every n 2 N . By

the continuity of �, �(�0) = limn"1 �(�n) = 0. Similarly, �(�00) = 0. As y(�) = De(�) = 0

for every � 2 (�0; �00), we have e(�) = � > 0 for every � 2 (�0; �00). Since y = 0 maximizes

H(�;U(�); e(�); �(�); �(�); y), it must also maximize ��(�)y; consequently, we must have

�(�) � 0. (3.4.10) yields

�(�) = (1 + �)

Z �

�0
dx f(x)

�
D2c(x; �) +D (�)�

�

1 + �
G(x)D12c(x; �)

�

such that �(�00) = 0, i.e.,

Z �00

�0
dx f(x)

�
D2c(x; �) +D (�)�

�

1 + �
G(x)D12c(x; �)

�
= 0 (3:4:14)

To sum up, in Regime 2, U is non-negative and increasing, � is negative and increasing, e

is a positive constant �, and � is non-negative.

Theorem 3.4.15. Suppose D12c > 0 (resp. D12c > 0), Assumptions 3.1.2 and 3.4.1 hold,

and fU ; eg is an optimal contract such that e(A) � (e0; e1). Then,

(A) U is increasing on A with U(�0) = 0; it is determined by (3.4.6),

(B) e is non-increasing (resp. non-decreasing) on A; it is determined by (3.4.13) if

De(�) < 0 (resp. De(�) < 0), and by (3.4.14) if De(�) = 0,

(C) � is negative, increasing, and given by (3.4.12), and

(D) � is non-negative (resp. non-positive); it is positive (resp. negative) only if

De(�) = 0.

4. Extensions

First, the above model can be extended to a situation where one regulator faces many

�rms. Even if the �rms do not interact directly, they will be connected via the regulator's

budget constraint and the fact that all the �rms' emissions add to the same public stock

of pollution.
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A second extension is to endogenize the mandated clean-up technology for public

pollution by choosing l to maximize social welfare.

A third direction for exploration is a numerical analysis of the solution proposed in

this paper.
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Appendix

Proof of Lemma 2.2.1. By the change of variable formula (Elliott, 1982, Theorem

12.21),

�(Zt) = �(Z0) +

Z
(0;t]

D�(Zs�)dZs +
1

2

Z
(0;t]

D2�(Zs�)dhZ
c; Zcis

+

N(t)X
n=1

[��(Z)Tn �D�(ZTn�)�ZTn ]

where (Zct ) is the continuous martingale part of (Zt). For s > 0, we have

Zs = Xs + �s � �s +�ZT0 +

N(s)X
n=1

�ZTn

where the last term can be re-written as

N(s)X
n=1

�ZTn =
1X
n=1

�ZTn1(0;s](Tn) =
1X
n=1

�ZTn

Z
(0;s]

�Tn(du)

�Tn is the Dirac measure sitting at Tn. Analogously,

N(s)X
n=1

��(Z)Tn =
1X
n=1

��(Z)Tn

Z
(0;s]

�Tn(du) (A:1)

Therefore, for s > 0, dZs = dXs + d(�� �)s +
P1

n=1�ZTn�Tn(ds). As Z
c
s = x+ �Ws, we

have dhZc; Zcis = dh�W; �W is = �2dhW;W is = �2ds. Therefore,

�(Zt) = �(Z0) +

Z
(0;t]

D�(Zs�)

"
�ds+ �dWs + d(�� �)s +

1X
n=1

�ZTn�Tn(ds)

#

+
�2

2

Z
(0;t]

dsD2�(Zs�) +

N(t)X
n=1

[��(Z)Tn �D�(ZTn�)�ZTn ]

Note thatZ
(0;t]

 
1X
n=1

�ZTn�Tn

!
(ds)D�(Zs�) =

1X
n=1

�ZTn

Z
(0;t]

�Tn(ds)D�(Zs�)

=
1X
n=1

�ZTnD�(ZTn�)1(0;t](Tn)

=

N(t)X
n=1

�ZTnD�(ZTn�)
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Using this formula, cancelling terms, and using the fact that the continuity of integrators

allows us to replace Zs� by Zs, we have

�(Zt) = �(Z0) + �

Z
(0;t]

D�(Zs)dWs +

Z
(0;t]

ds

�
�D�(Zs) +

�2

2
D2�(Zs)

�

+

Z
(0;t]

D�(Zs)d(�� �)s +

N(t)X
n=1

��(Z)Tn

It follows from (A.1) that d
PN(s)

n=1 ��(Z)Tn =
P1

n=1��(Z)Tn�Tn(ds). Integrating by

parts (Elliott, 1982, Corollary 12.22), we have

e��t�(Zt) =

Z
(0;t]

e��sd�(Z; p)s � �

Z
(0;t]

ds e��s�(Zs) + �(Z0)

= �(Z0) +

Z
(0;t]

e��s

"
�D�(Zs)dWs + ds

�
�D�(Zs) +

�2

2
D2�(Zs)

�

+D�(Zs)d(�� �)s +
1X
n=1

�Tn(ds)��(Z)Tn

#
� �

Z
(0;t]

ds e��s�(Zs)

= �(Z0) + �

Z
(0;t]

e��sD�(Zs)dWs +

Z
(0;t]

ds e��s��(Zs)

+

Z
(0;t]

e��sD�(Zs)d(�� �)s +

Z
(0;t]

 
1X
n=1

��(Z)Tn�Tn

!
(ds)e��s

The last formula can be re-written as

1X
n=1

��(Z)Tn

Z
(0;t]

�Tn(ds)e
��s =

1X
n=1

��(Z)Tne
��Tn1(0;t](Tn) =

N(t)X
n=1

��(Z)Tne
��Tn

Given our assumptions, it follows (Karatzas & Shreve, Proposition 2.10) that the stochastic

integral  Z
(0;t]

e��sD�(Zs)dWs

!
t2<+

is a martingale. As T0 = 0, it follows that �(Z0) = �(x) + ��(Z)T0 . Therefore, taking

expectations in the above equation yields the result.

Proof of Lemma 2.2.2. We have

Ct(R;L;x; �; �; h; 0; l; �) = h

Z
[0;t]

ds e��sZs + l

Z
[0;t]

ds e��sdLs

= h

Z
[0;t]

ds e��s(x+ �s+ �Ws + Rs � Ls) + l

Z
[0;t]

ds e��sdLs
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Elementary calculations yieldZ
[0;t]

ds e��s =
1

�
(1� e��t) and

Z
[0;t]

ds e��ss =
1

�2
(1� e��t)�

1

�
te��t

Evaluating the fourth term, we have

Z
[0;t]

ds e��sRs =

Z
[0;t]

ds e��s�s +

Z
[0;t]

ds e��s
N(s)X
n=0

�RTn

As �0 = 0, we have Z
[0;t]

ds e��s�s =
1

�

 Z
[0;t]

e��sd�s � e��t�t

!

and Z
[0;t]

ds e��s
N(s)X
n=0

�RTn =

Z
<+

ds e��s1[0;t](s)
1X
n=0

�RTn1[0;s](Tn)

=

1X
n=0

�RTn

Z
<+

ds e��s1[0;t](s)1[Tn;1)(s)

=
1X
n=0

�RTn1[0;t](Tn)

Z
<+

ds e��s1[Tn;t](s)

=
1X
n=0

�RTn1[0;t](Tn)

Z
[Tn;t]

ds e��s

=
1

�

N(t)X
n=0

�RTn(e
��Tn � e��t)

as N(t) is �nite almost surely. Thus,

Z
[0;t]

ds e��sRs =
1

�

2
4Z

[0;t]

e��sd�s � e��t�t +

N(t)X
n=0

�RTn(e
��Tn � e��t)

3
5

=
1

�

Z
[0;t]

e��sdRs �
1

�
e��tRt

The integral
R
[0;t] ds e

��sLs is manipulated analogously. Therefore,

Ct(R;L;x; �; �; h; 0; l; �) =

�
hx

�
+
h�

�2

�
(1� e��t)�

h�

�
te��t + h�

Z
[0;t]

ds e��sWs

+
h

�

"Z
[0;t]

e��s(dR� dL)s � e��t(R� L)t

#

+ l

Z
[0;t]

ds e��sdLs

24



Taking expectations and letting t " 1, we have

EC1(R;L;x; �; �;h; 0; l; �)

=
hx

�
+
h�

�2
+
h

�
E

Z
<+

ds e��sdRs +

�
l �

h

�

�
E

Z
<+

ds e��sdLs

=
hx

�
+
h�

�2
+ EC1(R;L;x; �; �; 0; h=�; l� h=�; �)

which is the desired formula.

Proof of Lemma 2.3.1. Note that

E

"
e��t�(Zt) + Ct(R;L;x; �; �; 0; �; l� �; �)� �(x)�

Z
(0;t]

ds e��s��(Zs)

#

= E

Z
(0;t]

e��s[D�(Zs) + �]d�s �E

Z
(0;t]

e��s[D�(Zs)� (l � �)]d�s

+ E

N(t)X
n=0

e��Tn [�(ZTn)� �(ZTn ��RTn) + ��RTn)

+ E

N(t)X
n=0

e��Tn [�(ZTn)� �(ZTn +�LTn) + (l� �)�LTn)]

= E

Z
(0;t]

e��s[D�(Zs) + �]d�s �E

Z
(0;t]

e��s[D�(Zs)� (l � �)]d�s

+ E

N(t)X
n=0

e��Tn
Z ZTn

ZTn��RTn

dy [D�(y) + �]

� E

N(t)X
n=0

e��Tn
Z ZTn+�LTn

ZTn

dy [D�(y)� (l� �)]

Our hypotheses imply that

E[e��t�(Zt) + Ct(R;L;x; �; �; 0; �; l� �; �)� �(x)] � 0 (A:2)

By the mean value theorem, �(Zt) = �(0) +D�(c)Zt for some c 2 [0; Zt]; consequently,

e��t�(Zt) = e��t�(0) + e��tD�(c)Zt. Setting � = maxf�; jl � �jg, it follows from

(a) that jD�(c)j � �. As (R;L) is a feasible policy, it follows from De�nition 2.1.3(a)

that Zt � 0 almost surely. Therefore, je��t�(Zt)j � je��t�(0)j + e��t�Zt. Conse-

quently, Ee��tj�(Zt)j � e��tj�(0)j + �Ee��tZt. It follows from De�nition 2.1.3(c) that

limt"1Ee��tj�(Zt)j = 0. Thus, as t " 1 the �rst term in (A.2) vanishes, thereby yielding

the result.
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Proof of Lemma 2.3.6. Suppose � > l. It is straightforward to check that the expression

on the left-hand-side of (2.3.5) is a strictly decreasing function of S 2 <. Moreover, this

function is concave over <+. Note that the value of this function at 0 is 2(l� �). If l < �,

then 2(l � �) > �2�. By the intermediate value theorem, there exists a unique S that

solves (2.3.5).

Conversely, suppose � � l. If � = l, then (2.3.5) has no solution. Suppose � < l. It

is straightforward to check that the expression on the left-hand-side of (2.3.5) is a strictly

increasing function of S 2 <. Moreover, this function is convex over <+. Note that the

value of this function at 0 is 2(l � �) > 0 > �2�. Thus, there is no S > 0 that solves

(2.3.5).

Proof of Lemma 2.3.7. (A) follows from construction.

(B) Clearly, these inequalities hold on the set f0g [ [S;1).

Consider (0; S). Let g(:;S) = DF (:;S). Then, �g(x;S) = 0 for every x 2 (0; S),

g(0;S) = �� < l � � = g(S;S) < 0. If g(x;S) < �� for some x 2 (0; S), then there exists

x� 2 (0; S) such that g(x�;S) = minx2[0;S] g(x;S) < ��. Consequently, Dg(x�;S) = 0

and D2g(x�;S) � 0. It follows that �g(x�;S) > 0, which is a contradiction. Thus,

DF (x;S) = g(x;S) � �� for every x 2 (0; S).

We now show that DF (x;S) = g(x;S) � l � � for every x 2 (0; S). Suppose there

exists x 2 (0; S) such that g(x;S) > l � �. Then, there exists x� 2 (0; S) such that

g(x�;S) = maxx2[0;S] g(x;S). It follows that Dg(x�;S) = 0. We also have Dg(S;S) =

D2F (S;S) = D2f(S;S) = 0. Note that �Dg(x;S) = 0 for every x 2 (x�; S). Suppose

maxx2[x�;S]Dg(x;S) > 0. Then, there exists x�� 2 (x�; S) such that �Dg(x��;S) < 0, a

contradiction. So, Dg(x;S) � 0 for every x 2 [x�; S]. Similarly, Dg(x;S) � 0 for every

x 2 [x�; S]. So, Dg(x;S) = 0 for every x 2 [x�; S]. It follows that l � � = g(S;S) =

g(x�;S) +
R S
x�
dy Dg(y;S) = g(x�;S) > l � �, which is a contradiction.

(C) For x 2 [0; S], �F (x;S) = �f(x;S) = 0. Consider x > S. Note that, as

D2f(S;S) = 0, we have �Df(S;S)� �f(S;S) = �f(S;S) = 0. Therefore,

�F (x;S) = �(l� �)� �[f(S;S) + (l � �)(x� S)]

= �(l� �)� �Df(S;S)� �(l� �)(x� S)

= ��(l � �)(x� S)

> 0
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which concludes the proof.

Proof of Lemma 2.3.11. (A) Suppose (R;L) solves (2.3.10). It follows from (2.3.10)

that 0 � Zt = Xt + Rt � Lt � S for every t 2 <+. Consequently, conditions 2.1.3(a) and

2.1.3(c) are satis�ed. Condition 2.1.3(b) will follow from the continuity of (R;L) and the

conventions that T0 = 0 and inf ; =1.

(i) It follows directly from (2.3.10) that R and L are non-negative and non-decreasing

processes.

(ii) Consider t 2 <+. By (2.3.10), Rt � Lt�Xt and Lt � Xt+Rt�S. If Rt = Lt�Xt,

then Lt > Xt+Rt�S. Otherwise, Lt = Xt+Rt�S, which implies S = 0, a contradiction.

Similarly, if Lt = Xt +Rt � S, then Rt > Lt �Xt.

(iii) If R0 = [L0 � x]+ > 0, then R0 = L0 � x. By (ii), this means L0 > x+ R0 � S.

Since L0 = [x+ R0 � S]+, this means L0 = 0. Therefore, R0 = �x � 0, a contradiction.

It follows that R0 = 0 and L0 = [x� S]+ � 0.

(iv) Since, R and L are non-decreasing, their sample paths must have left-hand limits

at every t, denoted by Rt� and Lt� respectively. Note that

Rt� = lim
n"1

Rt�1=n = lim
n"1

sup
�
[Lu �Xu]

+ j u 2 [0; t� 1=n]
	

Since

sup
�
[Lu �Xu]

+ j u 2 [0; t� 1=n]
	
� sup

�
[Lu �Xu]

+ j u 2 [0; t)
	

for every n 2 N , we have

Rt� = lim
n"1

sup
�
[Lu �Xu]

+ j u 2 [0; t� 1=n]
	
� sup

�
[Lu �Xu]

+ j u 2 [0; t)
	

Conversely, for every n 2 N , there exists un 2 (t� 1=n; t) such that

sup
�
[Lu �Xu]

+ j u 2 [0; t)
	
� 1=n < [Lun �Xun ]

+ � Run

Letting n " 1, we have

sup
�
[Lu �Xu]

+ j u 2 [0; t)
	
� Rt�

As an analogous argument applies to Lt�, we have

Rt� = sup
�
[Lu �Xu]

+ j u 2 [0; t)
	

and Lt� = sup
�
[Xu +Ru � S]+ j u 2 [0; t)
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(v) Suppose Rt > Rt� and Lt > Lt� for some t 2 <+. Then, using (iv),

Rt = sup
�
[Lu �Xu]

+ j u 2 [0; t]
	
> sup

�
[Lu �Xu]

+ j u 2 [0; t)
	
= Rt�

and

Lt = sup
�
[Xu +Ru � S]+ j u 2 [0; t]

	
> sup

�
[Xu + Ru � S]+ j u 2 [0; t)

	
= Lt�

Consequently, Rt = [Lt � Xt]
+ > 0 and Lt = [Xt + Rt � S]+ > 0. It follows that

Rt = Lt � Xt and Lt = Xt + Rt � S, which contradicts (ii). So, Rt > Rt� implies

Lt = Lt�, and similarly, Lt > Lt� implies Rt = Rt�, i.e., R and L cannot jump at the

same t.

(vi) Let t 2 <+ be such that Rt � Rt� > 0; by (v), this implies Lt = Lt�. Then,

Rt = [Lt �Xt]
+ > 0. Consequently, Rt = Lt �Xt and for every n 2 N ,

Lt �Xt = Rt > Rt� � [Lt�1=n �Xt�1=n]
+ � Lt�1=n �Xt�1=n

Therefore,

Lt �Xt > Rt� � lim
n"1

(Lt�1=n �Xt�1=n) = Lt� �Xt� = Lt �Xt

a contradiction. Thus, R is continuous on <+. Similarly, L is continuous on <+.

(B) We now de�ne a control policy (R;L) that satis�es (2.3.10). Let T0 = 0 and

(Tk)k2N be an increasing positive sequence of stopping times. Let

T1 = infft > 0 j Xt � [x� S]+ � 0 _ Xt � [x� S]+ � Sg

Since Xt� [x�S]+ is a continuous process, XT1� [x�S]+ 2 f0; Sg. If XT1� [x�S]+ = 0,

then de�ne (R;L) as follows:

Rt =

8<
:
0; if t 2 [T0; T1)
RT2k ; if t 2 [T2k; T2k+1)
sup f[Lu �Xu]

+ j u 2 [0; t]g ; if t 2 [T2k�1; T2k)
(A:3a)

and

Lt =

8<
:
[x� S]+; if t 2 [T0; T1]
sup f[Xu + Ru � S]+ j u 2 [0; t]g ; if t 2 (T2k; T2k+1]
LT2k�1 ; if t 2 (T2k�1; T2k]

(A:3b)
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If XT1 � [x� S]+ = S, then de�ne (R;L) as follows:

Rt =

8<
:
0; if t 2 [T0; T1]
RT2k�1 ; if t 2 (T2k�1; T2k]
sup f[Lu �Xu]

+ j u 2 [0; t]g ; if t 2 (T2k; T2k+1]
(A:4a)

and

Lt =

8<
:
[x� S]+; if t 2 [T0; T1]
sup f[Xu + Ru � S]+ j u 2 [0; t]g ; if t 2 (T2k�1; T2k]
LT2k�1 ; if t 2 (T2k; T2k+1]

(A:4b)

Given (R;L), de�ne Zt = Xt+Rt�Lt. We have already speci�ed T0 and T1. Specify the

other stopping times as follows: given k 2 N , let

T2k =

�
infft > T2k�1 j Zt � Sg; if ZT1 = 0
infft > T2k�1 j Zt � 0g; if ZT1 = S

(A:5a)

and

T2k+1 =

�
infft > T2k j Zt � 0g; if ZT1 = 0
infft > T2k j Zt � Sg; if ZT1 = S

(A:5b)

We now show that (R;L), de�ned by (A.3), (A.4) and (A.5), satis�es (2.3.10).

We �rst show that (2.3.10) holds for t 2 [0; T1]. Suppose there exists t 2 [0; T1)

such that 0 = Rt 6= sup f[Lu �Xu]
+ j u 2 [0; t]g. It follows that, for some u 2 [0; t],

[Lu � Xu]
+ > 0, i.e., [x � S]+ � Xu = Lu � Xu > 0, but this contradicts the def-

inition of T1. Similarly, suppose there exists t 2 [0; T1) such that [x � S]+ = Lt 6=

sup f[Xu +Ru � S]+ j u 2 [0; t]g = sup f[Xu � S]+ j u 2 [0; t]g. It follows that, for some

u 2 [0; t], [Xu � S]+ > [x � S]+ � 0, i.e. Xu � S > [x � S]+, but this contradicts the

de�nition of T1.

We now show that (2.3.10) holds for intervals of the form (T2k; T2k+1]. For t 2

(T2k; T2k+1], (2.3.10b) holds by de�nition. Suppose there exists t 2 (T2k; T2k+1] such that

(2.3.10a) does not hold, i.e., RT2k = Rt 6= sup f[Lu �Xu]
+ j u 2 [0; t]g. It follows from

(A.3a) that 0 � RT2k < [Lu � Xu]
+ for some u 2 (T2k; t]. It follows that Lu � Xu =

[Lu �Xu]
+ > RT2k , which implies Xu + Ru � Lu = Xu + RT2k � Lu < 0, a contradiction

of the de�nition of T2k+1. An analogous proof can be given for intervals of the form

(T2k�1; T2k].

Finally, we show that the solution constructed above is unique. Suppose (R;L) and

(R0; L0) are distinct solutions of (2.3.10). Let ! 2 
 be such that T (!) = infft 2 <+ j

Rt(!) > R0t(!)g <1. By de�nition, Rt(!) = R0t(!) for every t 2 [0; T (!)). Consequently,
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Lt(!) = L0t(!) for every t 2 [0; T (!)). By the continuity of R(!) and R0(!), this implies

RT (!)(!) = R0T (!)(!) and LT (!)(!) = L0T (!)(!). Also, by continuity, there exists � > 0

such that Rt(!) > R0t(!) for every t 2 (T (!); T (!) + �). Consequently,

Lt(!) = sup
�
[Xu(!) + Ru(!)� S]+ j u 2 [0; t]

	
� sup

�
[Xu(!) + R0u(!)� S]+ j u 2 [0; t]

	
= L0t(!)

for every t 2 (T (!); T (!) + �). This means RT (!)(!) = LT (!)(!) � XT (!)(!). By (i),

LT (!) > XT (!)(!)+R
0
T (!)(!)�S. It follows that, for some 0 < � � �, Lt(!) = LT (!)(!) for

every t 2 (T (!); T (!) + �). Consequently, Lt(!) � L0t(!) � L0T (!)(!) = LT (!)(!) = Lt(!)

for every t 2 (T (!); T (!) + �). Since Lt(!) = L0t(!) for every t 2 (T (!); T (!) + �), we

have Rt(!) = R0t(!) for every t 2 (T (!); T (!) + �), a contradiction.

(C) By Lemma 2.2.1, the de�nition of Ct, and the de�nition of (R;L),

E[e��tF (Zt) + Ct(R;L;x; �; �; 0; �; l� �; �)]

= F (x) +E

Z
(0;t]

e��s[DF (Zs) + �]d�s

� E

Z
(0;t]

e��s[DF (Zs)� (l � �)]d�s +E

Z
(0;t]

ds e��s�F (Zs)

+ E�F (Z)T0 +E(l� �)�LT0

(A:6)

Consider the right-hand-side of (A.6). By the de�nition of (R;L), d�s > 0 if and only if

Zs = 0, and d�s > 0 if and only if Zs = S. Since DF (0) = �� and DF (S) = l � �, the

second and third terms vanish. As Zs 2 [0; S] for every s > 0, we have �F (Zs) = 0 for

every s > 0. Therefore, the fourth term vanishes. The last two terms can be written as

E[F (Z0) � F (x) + (l � �)�LT0 ]. If x 2 [0; S], then Z0 = x and �LT0 = 0; consequently,

E[F (Z0)�F (x)+(l��)�LT0 ] = 0. If x > S, then Z0 = S and �LT0 = x�S; consequently,

E[F (Z0)� F (x) + (l� �)�LT0 ] = E[F (S)� F (x) + (l � �)(x� S)] = 0. Thus, we have

E[e��tF (Zt) + Ct(R;L;x; �; �; 0; �; l� �; �)] = F (x)

By construction, Zt 2 [0; S] for every t 2 <+. As [0; S] is compact and F continuous,

fF (Zt) j t 2 <+g is bounded. Therefore, as t " 1, the �rst term vanishes, yielding the

desired result.
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Proof of Lemma 3.2.2. Suppose D12c > 0. The other case can be handled analogously.

Suppose U(�; �) � U(�; �0) for all �; �0 2 A. It follows that D2U(�; �) = 0 for

almost every � 2 A. Adding the inequalities for types � and �0, and cancelling common

terms, we have Z e(�0)

e(�)

de

Z �

�0
dxD12c(x; e) � 0

If � > �0, then e(�0) � e(�), i.e., e is non-increasing.

Conversely, suppose D2U(�; �) = 0 for almost every � 2 A and e is non-increasing,

and there exist �; �0 2 A such that U(�; �) < U(�; �0). This amounts to

0 <

Z �0

�

dxD2U(�; x) =

Z �0

�

dx [D2U(�; x)�D2U(x; x)] =

Z �0

�

dx

Z �

x

dy D12U(y; x)

(A:7)

It is straightforward to check that D12U(y; x) = �D12c(y; e(x))De(x) � 0.

Suppose �0 > �. Consider x 2 [�; �0]. It follows that
R �0
�
dx
R �
x
dy D12U(y; x) � 0,

which contradicts (A.7).

Suppose �0 < �. Consider x 2 [�0; �]. It follows that
R �0
�
dx
R �
x
dy D12U(y; x) � 0,

which contradicts (A.7).
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