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Abstract: 

Missing data are often a problem in social science data. Imputation methods fill in the missing 

responses and lead, under certain conditions, to valid inference. This article reviews several 

imputation methods used in the social sciences and discusses advantages and disadvantages of 

these methods in practice. Simpler imputation methods as well as more advanced methods, 

such as fractional and multiple imputation, are considered. The paper introduces the reader 

new to the imputation literature to key ideas and methods. For those already familiar with 

imputation methods the paper highlights some new developments and clarifies some recent 

misconceptions in the use of imputation methods. The emphasis is on efficient hot deck 

imputation methods, implemented in either multiple or fractional imputation approaches. 

Software packages for using imputation methods in practice are reviewed highlighting newer 

developments. The paper discusses an example from the social sciences in detail, applying 

several imputation methods to a missing earnings variable. The objective is to illustrate how to 

choose between methods in a real data example. A simulation study evaluates various 

imputation methods, including predictive mean matching, fractional and multiple imputation. 

Certain forms of fractional and multiple hot deck methods are found to perform well with 

regards to bias and efficiency of a point estimator and robustness against model 

misspecifications. Standard parametric imputation methods are not found adequate for the 

application considered.  

 

Keywords: item-nonresponse, imputation, fractional imputation, multiple imputation, 

estimation of distribution functions. 
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1. Introduction 

In sample surveys nonresponse is often a major problem. This is of particular concern in 

medical and social science data. Many researchers in the social sciences are often faced with 

nonresponse problems but may not be familiar with statistical analysis methods that address 

the missing data problem adequately. Often the key focus of the research is not the 

nonresponse itself, which may be regarded as a nuisance, but a substantial research question, 

such as the estimation of income distributions or the estimation of regression models to 

analyse economic or demographic data (Lillar et al., 1986; Freedman and Wolf, 1995, Stuttard 

and Jenkins, 2001; Hirsch and Schumacher, 2004). Variables of interest to social scientists, 

such as income variables, opinion and attitudes, beliefs and others might be regarded as 

sensitive questions and are therefore often prone to nonresponse. Dealing with nonresponse 

can be a difficult matter and it is important to apply adequate missing data methods to obtain 

valid inference.   

This article reviews various imputation methods used within the social sciences to compensate 

for item-nonresponse bias, and provides guidance on how to use such methods in practice. A 

case study from the social sciences is presented, illustrating the choice of imputation methods 

for a particular application. Simple imputation methods are commonly used within the social 

sciences but these may not be adequate in many circumstances (Ibrahim et al. 2005). More 

sophisticated methods, such as fractional hot deck, multiple imputation and generally less 

parametric methods, have advantages and the use of such advanced methods may be 

preferable. In this paper, the application of hot deck methods is emphasised as a means of 

relaxing distributional assumptions made by standard parametric imputation methods, such as 

regression and parametric multiple imputation. It also discusses a method combining hot deck 

and multiple imputation as a semi-parametric approach. The paper introduces the novice to 

the principles, methods and recent debates in the imputation literature. It also provides the 

reader familiar with imputation methods with newer developments in this field. A review of 
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recent software developments from a social sciences perspective is included. This article 

addresses some recent misconceptions with respect to the use of proper and improper 

(multiple) imputation. It is emphasised that the choice of an appropriate imputation method 

may strongly depend on the data available, the application and purpose of the analysis, as 

illustrated in an example from the social sciences.   

The article is structured as follows. In section 2, different approaches to handling missing data 

are presented briefly. Definitions and basic assumptions about the missing data mechanisms 

are introduced in section 3. In section 4, several imputation methods as a way of handling 

nonresponse are reviewed. The problem of valid variance estimation under imputation is 

addressed briefly, however, this is not the focus of the paper. Section 5 reviews software for 

imputation in practice. A case study from the social sciences is discussed in section 6. A 

simulation study in section 7 evaluates different imputation methods with regards to bias and 

efficiency of a point estimator and robustness under model misspecification. Some concluding 

remarks are made in section 8.  

2. Missing Data Approaches 

By nonresponse it is meant that the required data are not obtained for all elements, which are 

selected for observation. Generally, a distinction is made between unit nonresponse, i.e. the 

failure of a selected sample member to respond, and item nonresponse where it is failed to 

obtain some required information from individual sample members. Unit nonresponse occurs 

if it is not possible to interview certain sample members or if sample members did not want to 

take part in the survey. Item nonresponse on the other hand occurs if the interviewer fails to 

ask a question, does not record the answer or the sample member refuses to answer a question 

or does not know the answer. There are several ways of dealing with nonresponse problems. 

For unit nonresponse normally weighting methods are applied. To compensate for item 

nonresponse a range of missing data methods exist, such as available case method, imputation 
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methods, weighting methods and model-based procedures such as maximum likelihood 

estimation. Overviews of such methods are given in Little and Rubin (1990), GSS (1996), 

Schafer and Graham (2002), Raghunathan (2004) and Ibrahim et al. (2005). The focus of this 

paper is on imputation methods to compensate for item-nonresponse. Nonresponse occurring 

in longitudinal studies, such as attrition or drop-out, will not be considered. 

Some simple methods that are commonly used to handle item-nonresponse are listwise or case 

deletion, pairwise deletion and available case analysis which focus on observed cases only 

(Allison, 2001; Ibrahim et al. 2005). Although these methods are sometimes applied by social 

scientists they have several shortcomings which are reported in Schafer and Graham (2002) 

and Allison (2001). Such methods are usually found not adequate to compensate for 

nonresponse bias in particular when estimating parameters other than means and may only be 

valid under strong assumptions about the mechanism that generated the missing values. In 

addition, variance estimation may not be straightforward and relationships between variables 

may be distorted. Maximum likelihood methods to address nonresponse problems have been 

described in Little and Rubin (2002) and Allison (2001). Weighting methods, such as 

propensity score weighting, although commonly used in the design and analysis of surveys, can 

also be used to adjust for item-nonresponse, as discussed in David et al. (1983), Little (1986) 

and Little and Rubin (2002). Improved weighting approaches, relaxing distributional 

assumptions and improving efficiency, have been proposed by Robins, Rotnitzky and Zhao 

(1994) and Robins and Rotnitzky (1995). Alternative approaches, regarding the missing data 

problem as an identification problem, have been discussed in Manksi (1995), and Manski 

(2005). However, these methods will not be reviewed here for space reasons.  

3. Notation and Typology of Item-Nonresponse 

Different types of item-nonresponse can be distinguished. In general, the missing-data pattern 

can be univariate, that means that the missing values only occur in a single response variable, or 
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multivariate in the sense that missing values occur in more than one variable. The choice of 

imputation method may depend on the underlying missing data pattern such that the 

investigation of the nonresponse pattern is important and useful. To facilitate the discussion 

the following notation is introduced. Let U  be a finite population of N  units and s  a sample 

of sample size . Let H  denote the complete data matrix with element  in the ith row and 

kth column, where , and . In the presence of missing data  refers to 

the observed part of the matrix H  and  to the missing part. Let R  denote a matrix with 

elements  

n ikh

1,...,i n= 1,...,k K=

i P

Q

i i

obsH

misH

                         (1) 
⎧⎪⎪= ⎨⎪⎪⎩

  if  observed1

0 if  missing.
ik

ik
ik

h
r

h

This general multivariate missing data pattern is illustrated in figure 1 (i) (Little and Rubin, 

1990). For the simple univariate case, where only one variable is subject to nonresponse and all 

other variables are fully observed, let  for unit i  denote the sample value of the variable 

subject to missing data,  a binary indicator of whether  is observed and  a vector of fully 

observed auxiliary variables, , with , to be able to distinguish 

easily between partially and fully observed variables, as illustrated in figure 1 (ii). The notation 

 denotes a vector and  a matrix of values respectively. For the case, where several 

variables are subject to nonresponse we may refer to , , and we have 

several indicator variables . It is then . A particular missing data pattern is a 

monotone nonresponse where the variables subject to missing data can be arranged in such a 

way that  is observed whenever  is observed, for all , also illustrated in 

figure 1 (iii).  

iy

ir iy ix

1 2( , ,..., )i i i Px x x x= 1,...,p =

Y X

1 2, ,...,i i Qiy y y 1,...,q =

1 ,...,i Qr r ( , )i ih x y=

qy 1qy + 1,..., 1q Q= −

One major problem with missing data is that it is usually unknown how nonresponse for each 

variable is generated, i.e. the distribution ( | )f R H ,  referred to as the nonresponse mechanism, 

where f  denotes the probability density function, is unknown. It is usually necessary to make 
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assumptions about this distribution, which often cannot be verified (Kalton, 1983; Nordholt, 

1998; Lessler and Kalsbeek, 1992, Little and Rubin, 2002). 
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Figure 1: Missing data patterns in sample s , (i) general multivariate pattern, and special cases 
(ii) univariate pattern and (iii)  monotone pattern.  

 

One simple assumption is that the data are missing completely at random (MCAR), defined as  

( | , ) ( )obs misf R H H f R= , that is the missingness depends neither on  nor on . For the 

univariate case this means that the probability of response depends neither on the variable 

subject to nonresponse, , nor on any other variable  (Rubin, 1987). Although the MCAR 

assumption may hold in certain settings it is a strong assumption, which is likely to be violated 

in many social science applications, and relaxation of this condition should be sought. If the 

distribution of the missing-data mechanism does not depend on the missing values  it is 

said that the data are missing at random (MAR) (Rubin, 1987), i.e. 

obsH misH

iy pix

misH

( | , ) ( | )obs mis obsf R H H f R H= , 

which implies that missingness does depend on the observed but not on the missing values. 

For the univariate case MAR holds if the probability of response does not depend on the 

variable  but may depend on other variables . Under MAR it is possible that the 

missingness depends on , however, when conditioning on other values  this dependency 

is wiped out and there is no residual relationship between  and . The MAR assumption is a 

weaker assumption than MCAR. Note that MCAR is testable given observed data (Little, 1988 

Dec.) but MAR is usually untestable since nonrespondent data are unobserved. If either 

MCAR or MAR hold the missing-data structure is ignorable. In general, the mechanism leading 

iy ix

iy ix

iy ir
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to missing values cannot be ignored. If the probability that an item is missing depends on the 

variable itself (even when conditioning on the observed values), and therefore neither MAR 

nor MCAR hold, the missing-data mechanism is not missing at random (NMAR) or nonignorable 

(Heitjan, 1994; Schafer, 1997; Little and Rubin, 2002). Often researchers regard the MAR 

assumption as a workable approximation although MAR may not hold in reality. To analyse 

the effects of MAR-based methods under a departure from MAR is therefore desirable. 

However, the impact on imputed estimators under such a departure may be small and MAR-

based procedures may still be usable, as illustrated in an example in section 7. In the following, 

several imputation methods are discussed to compensate for nonresponse bias under the MAR 

assumption.  

4. Imputation Methods  

Imputation is a method to fill in missing data with plausible values to produce a complete data 

set. A distinction may be made between deterministic and stochastic (or random) imputation 

methods. Given a selected sample deterministic methods always produce the same imputed 

value for units with the same characteristics. Stochastic methods may produce different values. 

Usually, imputation makes use of a number of auxiliary variables that are statistically related to 

the variable in which item nonresponse occurs by means of an imputation model (Lessler and 

Kalsbeek, 1992; Schafer, 1997). The main reason for carrying out imputation is to reduce 

nonresponse bias, which occurs because the distribution of the missing values, assuming it was 

known, generally differs from the distribution of the observed items. When imputation is used, 

it is possible to recreate a balanced design such that procedures used for analysing complete 

data can be applied in many situations. Rather than deleting cases that are subject to item-

nonresponse the sample size is maintained resulting in a potentially higher efficiency than case 

deletion. Imputation usually makes use of observed auxiliary information for cases with 

nonresponse maintaining high precision (Schafer and Graham, 2002). However, it can have 
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serious negative impacts if imputed values are treated as real values. To estimate the variance 

of an estimator subject to imputation adequately, often special adjustment methods are 

necessary to correct for the increase in variability due to nonresponse and imputation. It is also 

possible to increase the bias by using imputation, e.g. if the relationship between known and 

unknown variables is poor (Kalton and Kasprzyk, 1982; Kalton, 1983; Särndal, Swensson and 

Wretman, 1992; Little and Rubin, 2002).  

Under imputation let  denote the vector of imputed and observed values of Y  in the 

univariate case, such that 

.Y

      =  ,                         (2) .iy
for 1

for 0

i i

I
i i

y r

y r

=⎧⎪⎪⎪⎨⎪ =⎪⎪⎩

where i  and  denotes the imputed value for nonrespondent i . For the multivariate case 

the notation  is similarly used to denote the imputed vectors in , or in short 

. Let θ  denote the parameter of interest in the population, e.g. a mean or a 

regression coefficient, which is a function of the data in the population, and  an estimator of 

 based on the sample in the case of full response, such that . Applying imputation 

in the case of nonresponse an estimator is obtained of the form  called the 

imputed estimator. The aim is to define an approximately unbiased and efficient estimator by 

choosing an appropriate imputation method. Another important aspect of an imputation 

method is its robustness under misspecification of underlying assumptions, such as 

assumptions about the imputation or the nonresponse model. When choosing among 

imputation procedures it is important to consider carefully the type of analysis that needs to be 

conducted. In particular, it should be distinguished if the goal is to produce efficient estimates 

of means, totals, proportions or other official aggregated statistics, or a complete micro-data 

file that can be used for a variety of different analyses. Other issues when choosing an 

imputation method are the availability of variance estimation formulae and practical questions 

s∈ I
iy

1 2. , . ,..., .KH H H H

( , .obs misH H )

)

θ̂

θ ˆ (̂ )Hθ θ=

ˆ ˆ. ( , .obs misH Hθ θ=
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concerning implementation and computing time. Further evaluation criteria of imputation 

methods are described in Chambers (2003).  

It needs to be stressed that standard variance estimation for a point estimator valid for 

complete data may lead in many cases to severe underestimation of the true variance if applied 

to observed and imputed data (Rao and Shao, 1992). Standard variance estimation techniques 

are therefore not adequate in the presence of imputation. Various ways exist for estimating the 

variance of an estimator under imputation, including multiple imputation (Rubin, 1987), two-

phase approaches (Rao and Sitter, 1995; Shao and Steel, 1999), model-assisted approaches 

(Deville and Särndal, 1994; Chen and Shao, 2000) and replication methods, such as jackknife 

variance estimators (Rao and Shao, 1992; Shao and Sitter, 1996, Rao and Shao, 1999; Yung 

and Rao, 2000; Skinner and Rao, 2002). Recently, some misconceptions about the use and 

applicability of certain types of imputation methods have been mentioned in the literature, in 

particular with regards to estimation of the variance under imputation. These will be addressed 

in section 4.6.  

 

4.1 Simple Imputation Methods 

There are a number of different approaches to imputation. Deductive methods impute a missing 

value by using logical relations between variables and derive a value for the missing item with 

high probability (GSS, 1996). The method of (unconditional) mean imputation imputes the overall 

mean of a numeric variable for each missing item within that variable. A variation of this 

method is to impute a class mean, where the classes may be defined based on some 

explanatory variables. Disadvantages of such procedures are that distributions of survey 

variables are compressed and relationships between variables may be distorted (Kalton, 1983; 

Lessler and Kalsbeek, 1992; Little and Rubin, 2002). Although such simple imputation 

methods are commonly used in the social sciences (Jinn and Sedransk, 1989; Allison, 2001) 
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they are often not adequate to handle the missing data problem and more sophisticated 

methods should be used.  

 

4.2 Regression Imputation  

Another broad class of methods for imputing missing data is regression imputation (Kalton 

and Kasprzyk, 1982; Lessler and Kalsbeek, 1992; Little and Rubin, 2002). Predictive regression 

imputation, also called deterministic regression or conditional mean imputation, involves the use of 

one or more auxiliary variables, of which the values are known for complete units and units 

with missing values in the variable of interest. A regression model is fitted that relates  to 

auxiliary variables , i.e. the imputation model. The predicted values are used for imputation of 

the missing values in Y .  Usually, linear regression is used for numeric variables, whereas for 

categorical data logistic regression may be used. A potential disadvantage of predictive 

regression imputation is that it distorts the shape of the distribution of the variable Y  and the 

correlation between variables, which are not used in the regression model. The distortion is 

particularly disturbing if the tails of the distribution are being studied. It might also artificially 

inflate the statistical association between Y  and the auxiliary variables. For example imputing 

conditional means for missing income underestimates the percentages of cases in poverty even 

under MCAR (Kalton, 1983).  

iy

ix

Under random regression imputation, sometimes referred to as imputing from a conditional distribution, 

the imputed value for the variable Y  is a random draw from the conditional distribution of Y  

given . If a linear model between Y  and X  is considered a residual term is added to the 

predicted value from the regression, which allows for randomisation and reflects uncertainty in 

the predicted value. This residual can be obtained in different ways, e.g. by drawing from a 

normal distribution, either overall or within subclasses, or by computing the regression 

residuals from the complete cases and selecting an observed residual at random for each 

nonrespondent. A random regression model maintains the distribution of the variables and 

X
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allows for the estimation of distributional quantities (Kalton and Kasprzyk, 1982; Kalton, 

1983; Nordholt, 1998). An advantage of regression imputation is that it can make use of many 

categorical and numeric variables. The method performs well for numeric data, especially if the 

variable of interest is strongly related to auxiliary variables. The imputed value, however, is a 

predicted value either with or without an added on residual and not an actually observed value 

as in so-called hot deck methods. This can be a problem for imputing certain types of variables 

such as earnings and income variables, which is illustrated in sections 6 and 7. Another 

potential disadvantage of such a parametric approach is that the method may be sensitive to 

model misspecification of the regression model (Schenker and Taylor, 1996). If the regression 

model is not a good fit the predictive power of the model might be poor (Little and Rubin, 

2002). The following hot deck imputation methods, which are non-parametric or semi-

parametric, may address some of these issues.  

 

4.3 Hot Deck Imputation Methods 

Many approaches have been developed that assign the value from a record with an observed 

item, the donor, to a record with a missing value on that item, the recipient. Such imputation 

methods are referred to as donor or hot deck methods, setting *
I
j iy y=  for some donor 

respondent  for which ,  (Kalton and Kasprzyk, 1982; Little, 1986; Lessler and 

Kalsbeek, 1992). This involves consideration of how best to select the donor value.  A simple 

way is to impute for each missing item the response of a randomly selected case for the 

variable of interest. Alternatively, imputation classes can be constructed, selecting donor values at 

random within classes. Such classes may be defined based on the crossclassification of fully 

observed auxiliary variables. An advantage of the method is that actually occurring values are 

used for imputation. Hot deck imputation is therefore common in practice, and is suitable 

when dealing with categorical data. Hot deck methods are usually non-parametric (or semi-

parametric) and aim to avoid distributional assumptions. This is important if components of 

*i * 1ir = 0jr =
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the data are skewed or show certain features, such as truncation and rounding effects, often 

the case for social science data, or if the estimation of distributional quantities is of interest. 

Under hot deck imputation the imputed values will have the same distributional shape as the 

observed data (Rubin, 1987). For a hot deck method to work well a reasonably large sample 

size may be required.  

 

4.4 Nearest-Neighbour Imputation  

Nearest-neighbour imputation, also called distance function matching, is a donor method where the 

donor is selected by minimising a specified ‘distance’ (Kalton, 1983; Lessler and Kalsbeek, 

1992; Rancourt, 1999; Chen and Shao, 2000 and 2001). This method involves defining a 

suitable distance measure, where the distance is a function of the auxiliary variables. The 

observed unit with the smallest distance to the nonrespondent unit is identified and its value is 

substituted for the missing item according to the variable of concern. The easiest way is to 

consider just one continuous auxiliary variable  and to compute the distance D from all 

respondents to the unit with the missing item, i.e. , where  denotes the unit 

with the missing item in Y , , and . The missing item is replaced by the value , 

where the respondent  is the donor for nonrespondent  if . 

1X

1 1| |ji j iD x x= − j

0jr = 1ir = *iy

*i j * 1 1min | |j iji i
D x= − x

An advantage of nearest neighbour imputation is that actually observed values are used for 

imputation. Another advantage may be that if the cases are ordered for example geographically 

it introduces geographical effects. However, it should be noted that the outcome could depend 

on the chosen order of the file. Chen and Shao (2000) prove that the nearest-neighbour 

approach, although a deterministic method, estimates distributions correctly. Some values 

might be used several times for imputation if more than one missing value occurs in a row, 

others may not be used at all. The variance of  under nearest neighbour imputation may 

be inflated if certain donors are used much more frequently than others. The multiple usage of 

.̂( )yθ
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donors can be penalised or restricted to a certain number of times a donor is selected for 

imputation. For example, the distance function can be defined as  =*jiD

1 1min{| | (1 )}j ii
x x tµ− ∗ + i , where  is the assigned penalty for each usage,  is the 

number of times the respondent  has already been used as a donor,  and  

(Kalton, 1983). 

+∈µ it

i = 0ir =( ) 1d ir

 

4.5 Predictive Mean Matching Imputation 

A hot-deck imputation approach that makes use of the regression or imputation model, 

discussed in section 4.2, is the method of predictive mean matching imputation and has been 

described in Little (1988, July), Heitjan and Little (1991), Heitjan and Landis (1994) and 

Durrant and Skinner (2005a). In its simplest form it is nearest neighbour imputation where the 

distance is defined based on the predicted values of  from the imputation model, denoted 

. Predictive mean matching is essentially a deterministic method. Randomisation can be 

introduced by defining a set of values that are closest to the predicted value and choosing one 

value out of that set at random for imputation (Schenker and Taylor, 1996; Nordholt, 1998; 

Little and Rubin, 2002). Another form of predictive mean matching imputation is hot deck 

imputation within classes where the classes are defined based on the range of the predicted 

values from the imputation model. This method achieves a more even spread of donor values 

for imputation within classes, which reduces the variance of the imputed estimator. Donor 

values within classes may be drawn with or without replacement, where without replacement is 

expected to lead to a further reduction in the variance (Durrant and Skinner, 2005a; Kim and 

Fuller, 2004). The method of predictive mean matching is an example of a composite method, 

combining elements of regression, nearest-neighbour and hot deck imputation. Since it is a 

semi-parametric method, which makes use of the imputation model but does not fully rely on 

it, it is also assumed to be less sensitive to misspecifications of the underlying model than for 

example regression imputation (Schenker and Taylor, 1996). 

iy

îy
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For simplicity, some of the imputation methods have been explained in the univariate missing 

data context. However, the methods presented may be extended to more general missing data 

patterns. In a monotone missing data set up it may be possible to apply the imputation 

methods to  subject to missing data sequentially. For example, in the case of 

regression imputation one can formulate the imputation process as a sequence of regression 

models regressing  on  for . However, imputation may be difficult to 

implement in multivariate settings.  

1,..., QY Y

qY 1 1,..., ,qY Y− X Q1,...,q =

 

4.6 Repeated Imputation: Multiple and Fractional Imputation 

So far only single value imputation has been discussed, where one value is imputed for each 

missing item. It is also possible to use repeated imputation, in the sense that , , values 

are assigned for each missing item, by repeating a random imputation method several times. 

There are two reasons for using repeated imputation. One reason is to reduce for example the 

random component of the variance of the estimator arising from imputation. This is the aim 

when using the method of fractional imputation (Kalton and Kish, 1984; Fay, 1996; Kim and 

Fuller, 2004), which is based on repeating a single (random) imputation method several times. 

This method is described in greater detail in section 4.6.2. Another reason for using repeated 

imputation is simplification of variance estimation of a point estimator which may be difficult 

in the presence of imputation as indicated earlier. The method of multiple imputation (MI), as 

proposed by Rubin (1987), is also a form of repeated imputation in the sense that several 

values are assigned for each missing item. The idea behind this approach is that the repeated 

imputed values themselves already reflect uncertainty about the true but non-observed values, 

which can be estimated easily, provided the repeated imputation are what Rubin calls proper 

multiple imputation, as explained in section 4.6.1. A simple variance estimation technique is 

advantageous since many users and analysts of complex surveys and public-use data sets are 

not familiar with handling specific missing data problems and are not able to derive specific 

M 1M >
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variance estimation techniques in the presence of imputation. If imputation is carried out by 

repeating a single imputation method, such as regression or hot deck imputation, it is referred 

to as improper multiple imputation (Binder and Sun, 1996), which essentially is the same as 

fractional imputation. Variance estimation under single value or fractional imputation can be 

more difficult than under MI.  

 

4.6.1 Multiple Imputation 

The basic idea of multiple imputation is as follows: impute the missing values using an 

appropriate imputation model that incorporates random imputation, repeat this M times, carry 

out the analysis of interest, e.g. the estimation of a proportion, in each of the M resulting 

datasets and combine the estimates using Rubin’s rules (Rubin, 1987). For this to work the 

multiple imputations need to fulfil certain conditions, however, which is referred to as proper 

multiple imputation. Using the definition in Schafer (1997) multiple imputations are said to be 

proper if they are independent realizations of ( |mis obs )f H H  the posterior predictive distribution 

of . This posterior predictive distribution of the missing data under some complete-data 

model and prior can be written as  

misH

( | ) ( | , ) ( | )mis obs mis obs obsf H H f H H f H dς ς ς= ∫ .                (3) 

Proper multiple imputations therefore reflect uncertainty about  given the parameters of 

the complete data model and uncertainty about the unknown model parameters . Rubin 

(1987 and 1996) defines proper multiple imputation from a frequentist perspective without 

reference to any specific parametric model. Applying proper multiple imputation enables the 

use of the resulting M  complete-data sets for performing standard complete-data analysis, 

combining the results for a single overall inference. The nice feature is that the differences in 

the  results obtained from the M  complete-data sets can be used as a measure of 

uncertainty caused by missing data. Let  denote a variance estimate associated with  and 

 is the formula applied to observed and imputed data. Both  and  are calculated 

misH

ς

M

Ĝ θ̂

ˆ.G .̂θ ˆ.G
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separately for each data set based on observed and imputed data. The estimates from the mth 

data set are denoted  and G G ,  According 

to Rubin’s formulae (1987, pp. 76-81; see also Heitjan and Rubin, 1990; Schafer, 1997; Little 

and Rubin, 2002), to obtain a combined multiple imputation point estimate of θ  the average 

of the complete-data point estimates are taken, such that  

( )( )ˆ ˆ. ( , . mm
obs misH Hθ θ= ) mm

obs misH H= 1,..., .m M=( )( )ˆ ˆ. ( , . )

   ( )

1

1ˆ ˆ. .
M

m

mM
θ θ

=
= ∑ .                       (4) 

To obtain a variance estimate associated with  calculate the average of the complete-data 

variance estimates, called the within-imputation variance, 

.̂θ

( )
1

1 ˆ. M m
m

G
M =

= ∑ .G , and the variance 

estimate of the complete-data point estimates, defined as the between-imputation variance,       

( ) 2
1

1ˆ ˆ. ( .
1

M m
m

B
M

θ θ
=

= −
− ∑ .̂) . Combining both forms of the variance estimates including an 

adjustment term  for finite M , defines the overall variance estimate associated with 

 as 

(1 1/ )M+

.̂θ

       ˆˆ. . (1 1/ )T G M B= + + .  .                                (5) 

One simple way of defining a (proper) multiple imputation method is that under the method 

the variance estimation formula in (5) is indeed a valid formula, providing an approximately 

unbiased estimator of the variance. An advantage of MI is that it is possible to produce 

complete micro-data files that can be used for a variety of analyses. This is particularly useful 

when providing a public use dataset that may be analysed by a wide range of researchers with 

different types of analyses in mind. Consideration needs to be given to the definition and 

choice of the imputation model and the relationship to the analysis model. Generally, the 

imputation model should be chosen such that it coincides approximately with subsequent 

analysis performed on observed and imputed data, e.g. regression analysis. The model should 

be rich enough in the sense that it should preserve associations and relationships among 

variables that are of importance to the subsequent analysis. For example, explanatory variables 

and interactions that would be included in the analysis model under complete data should be 

included in the imputation model (Schafer, 1997; Sinharay, Stern and Russel, 2001, Schafer and 
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Olsen, 1998). Carpenter and Goldstein (2005) point out that the structure of the data, for 

example a hierarchical multilevel structure, should also be reflected in the imputation model. 

The number of multiple imputations is for many applications recommended to be between 3 

and 10, which may make the computational burden feasible in particular when using modern 

computer software. MI has the advantage to offer a relatively simple and flexible variance 

estimation formula, in the sense that it is in principle applicable to any type of imputed 

estimator. MI can also be used to fill in missing values in a multivariate missing data setting, 

and is suitable for numeric and categorical variables. It is currently probably the most practical 

and general approach, in particular for social scientists carrying out a large number of different 

analyses and missing values in several variables. Reviews of MI can be found in Rubin (1996), 

Schafer (1997 and 1999), Zhang, 2003, Schafer and Olsen (1998), Allison (2000 and 2001), 

Sinharay et al. (2001) and Schafer and Graham (2002), of which the latter five are less technical 

and refer to applications in the social sciences.  

In practice, different ways exist how to implement proper multiple imputations, some of 

which are not necessarily straightforward. Markov chain Monte Carlo, and especially data 

augmentation algorithms, defined in a Bayesian framework can be used for generating the 

missing data simulations. In this sense, multiple imputation is a Markov chain Monte Carlo 

approach to the analysis of incomplete-data sets (Rubin, 1996; Schafer, 1997; Lipsitz, Zhao 

and Molenberghs, 1998). However, such an approach is fully parametric and requires making 

assumptions about underlying distributions, such as multivariate normality, which may not be 

adequate in some applications. It may also be computationally expensive and convergence may 

be difficult to determine (Horton and Lipsitz, 2001). In addition, some social scientists may 

not be very familiar with such MCMC methods. However, the implementation of such 

computer intensive Bayesian methods is becoming increasingly easier with the availability of 

appropriate software (see section 5). The data augmentation method enables imputation by 

solving iteratively tractable complete data problems. It consists of a series of imputation steps 
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(I-steps), which impute the missing values given all the observed data and a current set of 

parameters, and posterior steps (P-steps), in which the parameters of the model are drawn 

from their posterior distribution given the complete data formed in the I-step. On 

convergence, the algorithm provides imputed values from the conditional distribution of the 

missing values given the observed data, where the distribution is integrated over any unknown 

parameters in the model with respect to the posterior distribution of these parameters given 

the data. More detail can be found in Tanner and Wong (1987), Gelman et al. (1998), Schafer 

(1997) and Allison (2000 and 2001).  

Raghunathan et al. (2001) developed a sequential regression approach to MI. The idea is to 

regard a multivariate missing data problem as a series of univariate missing data problems. The 

main procedure is as follows: First regress  on the set of fully observed variables  and 

impute the missing cases in  for example using a random regression imputation method, 

then regress  on  and X  and so forth until . This procedure is repeated c times, 

however, now including all variables as predictors in the regression models apart from the 

variable being imputed. After c rounds the final imputations are used. Repeating the process 

 times results in M  multiple imputations. An advantage of the method may be that a 

specific form for the multivariate distribution as in the data augmentation approach (Schafer, 

1997) can be avoided. The method, however, assumes that the multivariate posterior 

distribution exists, which may not always be the case, leading to non-convergence of the 

algorithm. There is thus a lack of a well established theoretical basis, and a note of caution 

needs to be applied, although the method is computationally attractive. The MICE method, 

multivariate imputation by chained equations, also referred to as regression switching, has been 

first described by Burren et al. (1999) and is closely related to the method by Raghunathan et 

al. (2001). It enables the implementation of MI for non-monotone missing data patterns based 

on a sequence of regression models.  

1Y X

1Y

2Y 1.Y QY

M
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Standard multiple imputation approaches are based on distributional assumptions and are 

parametric. As emphasised in Schafer (1997) for some applications a parametric approach 

might perform reasonably well even if the assumptions do not hold in practice. However, in 

general, there are many applications, particularly in the social sciences, where fully parametric 

approaches may not be suitable, as illustrated in an example in sections 6 and 7. In 

circumstances, where distributional assumptions are unlikely to hold, for example the 

assumption of normality is likely to be violated for earnings variables, it is important to focus 

on semi-parametric or non-parametric imputation methods that make less or even no 

distributional assumptions about the variable to be imputed. One way to achieve this using 

multiple imputation is to use the Approximate Bayesian bootstrap (ABB) (Rubin and 

Schenker, 1986), which may be regarded as a non-parametric approach to MI. Let the original 

sample contain imputation classes or cells defined, for example, by the values of fully observed 

categorical variables. For each imputation set the donors within each imputation class are 

sampled (bootstrapped) with replacement of the same size as respondents are available in each 

class. For each nonrespondent in every class one donor is selected with replacement from the 

set of bootstrapped respondents for that class at random. The method is repeated M  times. 

The case where the classes are defined based on the range of the propensity score of response 

(Rosenbaum and Rubin, 1983 and 1985), referred to as the propensity score method (Little, 

1986), is discussed in Lavori et al. (1995) and Allison (2000). Allison (2000), however, found in 

his study, focussing on missing data in a regression analysis, that the ABB based on the 

propensity score does not perform well leading to biased regression estimates. The ABB for 

predictive mean matching imputation is described in Heitjan and Little (1991), and requires 

bootstrapping the sample s  with replacement creating  bootstrap samples , 

. The parameters of the imputation model are estimated based on respondents 

only for each bootstrap sample, to reflect parameter uncertainty, and the predicted values, 

, are defined for each bootstrap sample. Based on these values predictive mean matching 

M ( )ms

1,...,m = M

( )ˆ miy
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imputation is performed, by drawing at random one donor value from a set of nearest 

neighbours, e.g. defined as the nearest 5 above and 5 below the predicted value of ( )ˆ mjy , 

. Some cases, however, have been reported where the multiple imputation variance 

estimation formula does not perform well when using the ABB method (Heitjan and Little, 

1991; Rao, 1996; Kim, 2002; Kim and Fuller, 2004). An alternative less parametric MI 

approach is to incorporate a hot deck method in the MI data augmentation procedure as 

suggested in Durrant and Skinner (2005b) and Durrant (2005) or to consider the partially 

parametric techniques in Schenker and Taylor (1996). Such a combination of methods may 

have certain advantages such as overcoming distributional assumptions by using a hot deck 

method and at the same time providing a simple variance estimation formula by using MI.  

0jr =

 

4.6.2 Fractional Imputation  

Another form of repeated imputation is the method of fractional imputation (Kalton and Kish, 

1984; Fay, 1996; Kim and Fuller, 2004; Durrant and Skinner, 2005a), which is based on the 

idea of repeating a random imputation method several times. Fractional imputation views the 

resulting estimator as a weighted estimator with fractional weights 1/M for each of the 

imputed values and the estimator  can be expressed in the same way as under multiple 

imputation in (4). Examples of fractional imputation are the use of repeated random hot deck 

and repeated predictive mean matching imputation. The main aim of repeated imputation is to 

improve the efficiency of the imputed point estimator. Kim and Fuller (2004) find in their 

study that fractional imputation is more efficient than multiple imputation based on the same 

number of repeated imputations. This is because of the additional variability in the MI 

methods, required to achieve proper MI, for example when drawing parameters from their 

posterior distributions to reflect uncertainty in the parameter estimates. An advantage of 

fractional imputation is that per definition the method is based on hot deck imputation, which 

makes less or no distributional assumptions in comparison to a fully a parametric method, 

.̂θ
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imputes actually observed values and can preserve distributional properties of the data. This 

may be important when imputing categorical variables or variables with certain distributional 

features. Another potential advantage of fractional imputation is that multiple datasets may not 

need to be stored which could make the data handling under fractional imputation under 

certain circumstances easier than under multiple imputation where  complete data files need 

to be stored and analysed. Under fractional hot deck imputation it is enough to store the 

replication weights, indicating how often a donor has been used for imputation, to carry out 

further analysis (Kim and Fuller, 2004). Let  denote the imputation weight for donor i , 

, then  and  is the number of times the donor i  has been used for 

imputation. The estimator in (4) then reduces to a weighted estimator based on  and only 

fully responding units. For example, when estimating the total of the variable  the 

fractionally imputed estimator  may be expressed as a weighted estimator of the form 

M

iw

1ir = 1i iw a= + ia

iw

iy
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i r i r
w y wθ
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Properties of such (fractionally imputed) weighted estimators are discussed in Durrant and 

Skinner (2005a) and Kim and Fuller (2004). In Durrant and Skinner (2005a) it is shown that 

corresponding variance estimation formulae are also based on the weights  and only 

responding units, which may be an attractive feature, simplifying data storage and analysis, at 

least for the univariate case.  

iw

 

4.7  Debate on Single, Fractional and Multiple Imputation: A Note of Caution 

Recently, some misconceptions about the use and applicability of certain types of imputation 

methods have been mentioned in the literature. Non-multiple approaches to imputation have 

been described as ‘older’ or as ‘conventional’ imputation methods and their use has been 

‘discouraged’ (Schafer and Graham, 2002; Allison, 2001). In contrast, (proper) multiple 

imputation methods have been promoted and are described as ‘modern’ methods. It is often 

stressed in the literature that single value imputation and so-called improper multiple 
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imputations, including factional imputation, treat the imputed values as known and thus do 

not reflect sampling variability under a model of nonresponse correctly leading to 

underestimation of the variance and therefore to undercoverage (Schafer, 1999; Sinharay, Stern 

and Russel, 2001; Schafer and Graham, 2002; Carlin, 2003; Raghunathan, 2004). It is 

emphasised that MI addresses the uncertainty due to imputation and it is concluded that MI is  

superior (Sinharay, Stern and Russel, 2001). Although variance estimation under imputation is 

not the emphasis in this paper, I feel, however, that these statements need some clarification, 

in particular for researchers not very familiar with nonresponse adjustment methods.  

In general, all imputation methods (also proper MI) require adjustments to the standard 

formulae to reflect the additional variability due to nonresponse and imputation correctly. The 

adjustment to the variance estimation formula in the case of MI (see equation (5)) is simple to 

implement in practice which is an advantage for practitioners and researchers without special 

knowledge of such statistical adjustment methods. The term .G  approximates the standard 

variance estimation formula for complete data whereas  reflects the adjustment 

necessary to capture the increased variability due to imputation and nonresponse. However, 

also the MI variance estimation formula may not estimate the variance correctly depending on, 

for example, the point estimator of interest or the way the multiple imputations were 

generated (Fay, 1996; Kim and Fuller, 2004; Nielsen, 2003; Allison, 2000). For example, Kim 

and Fuller (2004) show that the MI variance estimator is seriously biased for the variance of a 

domain mean with a relative bias of about 50%. They also show that MI variance estimation 

may be less stable and confidence intervals may be more variable with smaller coverage rates 

than under alternative fractional imputation methods. Fay (1996) also reports longer 

confidence intervals under MI. Allison (2000) reports that different approaches to MI may 

show a quite different performance depending on the application and context in which such 

methods are used. Although recommended as a general tool, MI should not be used without 

careful consideration of underlying assumptions and models to a particular application. Fay 

ˆ(1 1/ )M B+
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(1996) even recommends the use of a simulation study to examine the performance of MI 

before applying this method to a specific problem, and this may be advisable for all missing 

data adjustment methods.  

It should be stressed that also under single value and fractional imputation it is possible to 

estimate the variance of an imputed estimator correctly using methods as described in section 

4. Kim and Fuller (2004) suggest a consistent replication variance estimation procedure under 

fractional hot deck imputation, which is independent of the specific hot deck method used. 

Durrant and Skinner (2005a) discuss variance estimation under fractional nearest neighbour 

imputation, based on an approach proposed by Chen and Shao (2000). Fuller and Kim (2005) 

develop a jackknife variance estimation technique for fractional nearest neighbour imputation. 

However, since variance estimation is not the main focus of this paper these approaches will 

not be discussed further. An alternative approach would be to extend single value imputation 

methods to (proper) MI approaches such that the simple variance estimation formula in (5) is 

valid. For example, a hot deck imputation method may be used multiple times using the ABB 

or by drawing the parameters of underlying models from their posterior distributions 

(Schenker and Taylor, 1996). Another approach would be to incorporate hot deck methods in 

the MI data augmentation procedure as suggested in Durrant and Skinner (2005b). These 

approaches show that there may not be such a clear divide between these methods as 

emphasised in some of the literature, describing hot deck methods as ‘old imputation methods’ 

and MI methods as ‘modern methods’ (Schafer and Graham, 2002).  

5. Software for Imputation 

For general social science researchers, the use of imputation in practice is likely to depend on 

which algorithms are available in standard computer packages. Over the last few years, 

however, a number of missing data routines have been implemented in some software 

packages and are now available for use. Some require the export of data into a specialised 
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imputation software but some routines have been implemented in software often used by 

social scientists. For multiple imputation a wide range of free and commercial software has 

been developed in recent years which makes MI more widely applicable to many researchers. 

The following gives a brief overview and update of programmes that are currently available. 

All of these procedures assume MAR and are not readily available for nonignorable 

nonresponse mechanisms. Since programmes such as SPSS and STATA are widely used within 

the social science community their functions are described first.  

The SPSS procedure Missing Value Analysis (MVA) includes a variety of techniques to analyse 

the missing data pattern, including a test of MCAR based on Little (1988 Dec.). It calculates 

some basic statistics of variables subject to nonresponse and handles missing data based on a 

listwise or pairwise method, regression imputation or the EM (estimation – maximisation) 

method, a maximum-likelihood based method, described in Schafer (1997). The regression 

imputation method allows for the imputation of predicted values, or using adjustments such as 

adding on observed or randomly drawn residuals from a distribution. Overall, the functions in 

the MVA procedure are limited. Hot deck procedures for example are not included. In 

particular, SPSS does not include proper multiple imputation procedures. Hot deck imputation 

within classes, nearest neighbour and predictive mean matching imputation may be 

implemented in SPSS using appropriate commands from the general data and statistics menu 

(e.g. by ordering the dataset and selecting donor values appropriately), but no readily available 

command is implemented in the software.  

Another computer package that is often used by social scientists is STATA. STATA  includes 

options for various forms of hot deck imputation (e.g. using the library ‘sg116’) based on the 

approximate Bayesian bootstrap and regression imputation. In particular, it includes options 

for multiple imputation based on the implementation of the MICE method for multiple 

multivariate data imputation using the add on library ‘st0067’ (Royston, 2004). The function 

‘mvis’ imputes multivariate missing data and the function ‘uvis’ performs imputation of 
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missing values for the univariate case. An advantage is that both libraries can make use not just 

of random regression imputation but also of predictive mean matching imputation which 

enables the imputation of observed values (hot deck). The analysis of multiple imputed 

datasets is facilitated with the library ‘st0042’ which assumes that multiple imputation data sets 

have already been generated (Carlin, et al. 2003). The function ‘micombine’ fits a wide variety 

of regression models to multiply imputed datasets combining the estimates using Rubin’s rules. 

STATA, however, currently does not include MI based on data augmentation algorithms 

which is a disadvantage.  

Packages such as Splus and R are widely used by statisticians and economists and are used 

more and more by social scientists. Both facilitate the implementation of hot deck procedures, 

regression and predictive mean matching imputation. Splus includes a missing data analysis 

library which enables parametric model-based procedures. It facilitates the implementation of 

the EM algorithm and MI based on data augmentation (MCMC) for numeric variables, 

assuming multivariate normality, and for categorical and mixed variables as described in 

Schafer (1997). The routines are based on programmes such as NORM, CAT and MIX, 

developed by Schafer (1997), which are either for the use in Splus or as a stand-alone 

Windows software for multivariate normal, categorical, mixed continuous and categorical data 

respectively. Parametric assumptions, such as multivariate normality, are necessary and the 

implementation of hot deck methods within such MI procedures is not possible. The 

programme PAN has been developed for panel data (Schafer, 2001). The missing data library 

includes methods for the analysis of convergence, the analysis of multiple complete datasets 

and options for the analysis of missing data patterns.  (Norm, Cat, Mix and Pan are available 

from http://www.stat.psu.edu/~jls/misoftwa.html). Another Splus based library is MICE, 

implementing MI using a sequence of regression models. It allows for a variety of imputation 

models including predictive mean matching imputation. The software is available from 

 25

http://www.stat.psu.edu/~jls/misoftwa.html


www.multiple-imputation.com, maintained by the Department of Statistics of TNO 

prevention and Health.  

The procedures PROCMI and PROCMIANALYZE are implemented in SAS to perform MI. 

SAS offers three methods for creating the multiply imputed data sets. For monotone missing 

data patterns either a parametric regression method assuming a multivariate normal model or 

the propensity score method can be used. For arbitrary missing data patterns a Markov Chain 

Monte Carlo (MCMC) method is available assuming multivariate normality. The 

MIANALYZE procedure combines the multiple imputation results. The procedures PROC 

DETERMINISTIC and PROC DONOR have been developed at Statistics Canada to 

implement deterministic and donor imputation, the latter based on the nearest neighbour 

method. The SAS-based programme SEVANI, System for Estimation of Variance due to 

Nonresponse and Imputation, also developed at Statistics Canada, enables variance estimation 

for certain types of estimators under imputation methods such as regression and nearest 

neighbour imputation (Beaumont, 2003).  

The IVEware, Imputation and Variance Estimation Software, is implemented in SAS and 

performs single and multiple imputations of missing values using the sequential regression 

imputation method (Raghunathan et al., 2001; http://www.isr.umich.edu/src/smp/ive/). It is 

also available as a stand-alone software. The implementation of MI for multilevel models has 

been implemented recently in MLwiN by Carpenter and Goldstein (2005). Their method 

allows imputation under a hierarchical data structure, currently available for imputing missing 

covariates in a multilevel model under the assumption of normality. Further information on 

the software (and more generally on MI) can be obtained from www.missingdata.org.uk.  

In addition to imputation procedures implemented in commonly used statistics software there 

are a number of stand-alone packages. SOLAS is a commercial programme to perform six 

imputation techniques including two techniques for MI and benefits from a well designed user 

interface. It incorporates mean imputation, hot deck imputation either overall or within 
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imputation classes and regression imputation imputing predicted values. MI can be 

implemented either by using parametric regression imputation or by the propensity score 

method. However, it does not incorporate MCMC methods, and requires primarily a 

monotone missing data pattern. After completing the imputation the data may be exported to 

other software programmes or can be analysed in SOLAS. An analysis of missing data patterns 

is available. SOLAS has not been developed much further recently and its options are 

somewhat limited. Allison (2000) compared NORM and SOLAS indicating that under certain 

conditions SOLAS does not perform well but the freely available NORM software has certain 

advantages. (More information about SOLAS is available from 

http://www.statsol.ie/solas/solas.htm). Other software programmes such as AMELIA, 

EMCOV and MISTRESS are also available for imputation but are not discussed here for 

space reasons.  

A detailed discussion on computer programmes for implementing imputation can be found in 

Horton and Lipsitz (2001) with particular focus on MI software. More information about 

software for MI and an exhaustive list of references on MI are available from 

http://www.multiple-imputation.com. Another review paper on software is HOX (1999) 

focusing on SPSS, SOLAS and NORM. Although by now a wide range of different software 

packages are available that implement different forms of imputation, a note of caution is 

necessary. It is important to understand underlying assumptions of the procedures and to 

ensure their suitability for the application considered. Also, some of the routines may be 

implemented slightly differently in different software and may not be directly comparable 

across different computer packages. A useful tool may be the menu driven SAS based system 

GENESIS, which has been developed by Statistics Canada to enable simulation studies testing 

the performance of imputed estimators under different assumptions (Haziza, 2002).  

Using single value or fractional imputation still requires the correct estimation of the variance 

by using adjustment methods such as described in section 4. These may not be readily available 
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in the particular software used. The implementation of fractional hot deck methods and 

corresponding variance estimation techniques in readily available software routines therefore 

still needs further development. If MI is implemented in the software it is often based on the 

method of a sequence of regression models which currently still lacks a thorough theoretical 

basis. Fully parametric MI approaches (such as NORM) may not be suitable for some 

applications.  

6. A Case Study: Estimating Pay Distributions in the Presence of 

Missing Data 

6.1 Example from the UK Labour Force Survey 

To illustrate the properties of various imputation methods described in the previous sections 

and to demonstrate important considerations when applying imputation in practice, an 

application from the social sciences is discussed. The focus is on the choice of imputation 

methods to estimate a distribution function, with regards to bias, efficiency, robustness to 

model assumptions and ease of implementation. The illustration is motivated by the problem 

of estimating pay distributions of hourly pay in the United Kingdom based on Labour Force 

Survey data (LFS). In this survey, the variable of interest, hourly pay of employees, denoted , 

is missing for some cases, whereas other variables in the dataset, denoted as a vector , such 

as gender, occupation, qualification, industry section and others, are fully observed. The aim is 

to estimate the distribution of  by imputing the missing values using information on the fully 

observed variables . For more information on the particular estimation problem and the 

available data see Durrant and Skinner (2005a). Such estimation problems are of relevance for 

evaluating the impact of policies such as minimum wage legislations (Stuttard and Jenkins, 

2001). Similar estimation issues frequently occur in the social sciences, particularly in areas 

such as economics and demography (Lillar et al., 1986; Hirsch and Schumacher, 2004). 

Although the example is based on a specific problem, it illustrates basic considerations and 
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properties of the methods used. The case of estimating regression coefficients in the presence 

of missing data, an important case in the social sciences, has been discussed in detail in Little 

(1992), van Buuren et al. (1999), Allison (2000), Raghunathan et al. (2001) and Ibrahim et al. 

(2005), and will not be repeated here.  

In the application, the parameter , is the distribution of  in the population of employees U:  θ iy

      1 ( )i
i U
I y y

N
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∈
= ≤∑ ,            (7) 

where  is the usual indicator function and y  may denote a certain pay threshold, such as a 

national minimum wage. The variable  is missing for a number of cases and various 

imputation methods are considered for estimating the parameter in (7) based on the 

assumption of MAR. The case of nonignorable nonresponse is illustrated in section 7. The 

imputed estimator may be written as 
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When applying imputation, careful consideration needs to be given to the aim of the analysis, 

the estimator of interest, the type of data available, the missing data pattern and the properties 

of possible imputation methods in the context of the specific application. In the example 

considered here, an investigation of observed cases of the hourly pay variable  shows that 

truncation and rounding effects are an important feature of this variable and that the variable 

is skewed. To estimate its distribution correctly the imputation method should ideally 

reproduce such features. The point estimators of interest are the proportion of employees with 

pay below the national minimum wage, denoted , and the proportion with pay between the 

minimum wage and £5/hour, denoted . Let us now consider the imputation methods 

described in section 4 for this application.   
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6.2 Imputation Approaches for LFS Application 

Simple imputation methods such as mean imputation, often used in the social sciences, are not 

suitable for this application, distorting the shape of the distribution of  and leading to bias in 

the estimator of interest. Under the MAR assumption where 

iy

( | , 0)i i if y x r = =  ( | , 1)i i if y x r = , 

it would appear ‘natural’ to draw imputed values from the conditional distribution of y  given 

 fitted to respondent data, x (̂ | , 1)i i if y x r = , and then to draw the imputed values  from this 

estimated distribution at the values 

I
iy

jx  observed for the nonrespondents, . Regression 

imputation appears to be an obvious choice, representing the conditional distribution by a 

parametric regression model, such as 

= 0jr
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,                     (9) 

where  is a function of the covariates , allowing for non-linear and interaction terms, β  

is a vector of regression parameters and  are the residuals. To approximate normality the 

logarithmic transformation on  is used as it is common for earnings variables. Using the 

predicted values from this model for imputation, however, may lead to serious 

underestimation of . Random regression imputation, denoted Reg Imp, can address this 

problem, setting , where  is an estimator of  based on respondent data 

and  is a randomly selected residual, either drawn from a normal distribution or as an 

empirical residual from respondent data.  

(.)g ix

ie

iy

θ

ˆ ˆln( ) ( ; )I
i iy g x β= β̂ β

îe

Instead of single value imputation proper multiple imputation is used next, initially based on a 

standard parametric approach. A data augmentation procedure is implemented drawing the 

regression parameters from their posterior distribution (as in Schafer, 1997), denoted DA-Reg 

Imp(10).1 The number of repeated imputations is given in parentheses. However, for this 

application it was found that the then imputed values do not reproduce truncation and step 

effects of the hourly pay distribution leading to bias around such effects. In addition, the 

 
1 Note that strictly speaking it would be enough for this application under MAR to just draw the parameters from 
their posterior distribution given the data as in Schenker and Taylor (1996). However, for illustrative purposes, 
since the interest is on computational properties of such an iterative method and to allow extensions to more 
complex problems a data augmentation procedure was used.  
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residual assumptions made under such regression imputation, when drawing residuals from a 

normal distribution with a constant variance may not hold in this application. In particular, the 

assumption of a constant variance seems likely to be violated, resulting in adding on 

inappropriate residuals to the predicted values (see also Schafer, 1999). This illustrates an 

inadequacy of standard parametric (single or multiple) imputation approaches for this 

application. The effects of such parametric approaches (Reg Imp(1) and DA-Reg Imp(10)) 

when applied to LFS data can be seen in table 1, leading to quite different estimates than for 

the following hot deck imputation methods, indicating an overestimation of  and 

underestimation of . The sensitivity towards misspecification of model assumptions for 

parametric methods is further illustrated in section 7. 

1θ

2θ

In contrast, hot deck imputation methods are able to relax such residual assumptions. The 

imputed value from a donor will always be a genuine value and such methods seem much 

more suitable for this application. The basic donor imputation method considered is predictive 

mean matching, based on nearest neighbour imputation defined on the predicted values of the 

regression model, denoted PMM(1). This hot deck method showed as expected a much better 

performance than the previous parametric forms when applied to LFS data.  

In addition to bias, it is of interest to consider the efficiency of the point estimator under 

imputation. A number of approaches to reducing the variance inflation effect under nearest 

neighbour, due to the multiple usage of donors, are considered. One approach is the use of a 

penalty function as in section 4, discussed in Durrant and Skinner (2005a). Another possibility 

is to define imputation classes based on the range of the predicted values and drawing donors 

by simple random sampling within classes, denoted IC. The variance will be smaller if donors 

are drawn without replacement. A third approach for reducing the variance is to employ 

repeated imputed values, based on fractional imputation. This is implemented by repeating the 

imputation class method 10 times, denoted IC(10), ensuring that at least 10 donor values are 

available in each class. In addition, the predictive mean matching imputation based on nearest 
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neighbour is extended to fractional imputation, denoted PMM(10), by taking the 5 nearest 

donor neighbours above and below the predicted value of the nonrespondent. Since these 

forms of hot-deck imputation still make assumptions about the form of the imputation model 

these approaches are referred to as semi-parametric methods. 

The use of such forms of repeated imputation ‘naturally’ leads to the implementation of 

multiple imputation taking into account the uncertainty of the parameters of the imputation 

model. However, for this application clearly less parametric forms of multiple imputation need 

to be considered. One possibility is to use the Approximate Bayesian Bootstrap (ABB) as in 

Heitjan and Little (1991) with the aim of reflecting uncertainty of the parameter estimates by 

bootstrapping the LFS sample with replacement and to estimate  in each bootstrap sample, 

denoted ABB-PMM(10). For comparison, the approximate Bayesian Bootstrap method using 

imputation classes as suggested in Rubin and Schenker (1986), where the classes are defined 

based on the predicted values, is also implemented, denoted ABB-IC(10).  

β

Another possibility to generate MI is to implement hot deck imputation within a data 

augmentation procedure. The novelty here is to use forms of predictive mean matching within 

each imputation step instead of standard regression imputation with the aim of relaxing 

residual assumptions, commonly made in standard data augmentation procedures. The method 

is proposed by Durrant and Skinner (2005b). The approaches implemented in the imputation 

step are (for more detailed technical specifications of the algorithm see Durrant and Skinner, 

2005b): 

(i) Hot deck imputation within classes, denoted DA-IC(10): In each iteration, imputation 

classes are defined as previously and for each nonrespondent 10 donor values are selected 

from the class without replacement. Then, one donor value is selected at random from this 

set for imputation. After convergence  imputed sets are selected appropriately.  = 10M
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(ii) Nearest neighbour imputation, denoted DA-PMM(10): 10 nearest neighbours are defined 

as previously and one donor value is selected at random for imputation. After convergence 

 imputed sets are selected appropriately.  = 10M

Table 1 shows that the hot deck methods, either under single, fractional or multiple 

imputation, lead to very similar point estimates. The variance inflation effect is discussed in 

section 7. It was found that the hot deck methods are able to reproduce certain features of the 

hourly pay distributions, such as step and truncation effects. These methods also provide a 

tool to compensate for departures of residual assumptions, such as constant variance. 

 

Imputation Method 1
ˆ.θ  in % 2

ˆ.θ  in % 

REG IMP(1)                 1.24 26.27 
PMM(1) 0.51 29.06 
PMM(10) 0.50 29.04 
IC(10) 0.49 29.07 
DA-REGImp(10) 1.22 26.11 
DA-PMM(10) 0.50 28.78 
DA-IC(10) 0.51 26.99 
ABB-PMM(10) 0.52 28.31 
ABB-IC(10) 0.51 27.98 

Table 1: Estimates of  and  under various fractional and multiple imputation methods 
applied to the March-May 2000 quarter of the LFS. The number of imputations M  is 
indicated in parentheses. 

1θ 2θ

7. Simulation Study 

To illustrate and compare the performance of the imputation methods described in section 6 a 

simulation study is carried out. The performance and properties of the point estimator (8),  

and , in particular with respect to bias, are compared under ideal modelling conditions and 

under misspecification of the imputation and the nonresponse model. The values of the 

variable  are generated based on a model incorporating a large number of realistic values of 

, obtained from LFS data using a bootstrap method. The values of  are generated to 

follow a MAR nonresponse mechanism. A nonignorable nonresponse mechanism is also 

generated (see table 4). The design of the simulation study is described in detail in Durrant and 

1.̂θ

2.̂θ

iy

ix ir
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Skinner (2005a), and will not be repeated here. The simulation study in that paper focuses on a 

comparison between weighting and specific forms of fractional imputation. The emphasis here 

is on a comparison of a much broader range of imputation methods: single, fractional, 

multiple, parametric, semi-parametric and hot deck methods. All imputation methods 

implemented here were programmed in Splus/R.  

Imputation 
Method 

Bias of ˆ.1θ  Rel. Bias 

of ˆ.1θ  
Bias of ˆ.2θ Rel. Bias 

of ˆ.2θ  
REG IMP(10) 0.8*10-4  

(7.8*10-4) 
0.1 % 0.7*10-4  

(1.5*10-4) 
0.0 % 

PMM(1) 1.2*10-4 
(0.9*10-4) 

0.2 % 0.9*10-4 
(1.7*10-4) 

0.0 % 

PMM(10) 0.2*10-4 
(0.8*10-4) 

0.0 % -1.2*10-4 
(1.5*10-4) 

-0.1 % 

IC(10) 2.5*10-4  
(0.7*10-4) 

0.4 % 28.0*10-4

(1.5*10-4) 
1.5 % 

DA-REG IMP(10) 0.9*10-4

(8.0*10-4) 
0.2 % -2.2*10-4 

(1.5*10-4)  
-0.1 % 

DA-PMM(10) 0.2*10-4  
(8.1*10-4) 

0.0 % 0.5*10-4  
(1.6*10-4) 

0.0% 

DA-IC(10) 3.2*10-4 

(8.1*10-4) 
0.6 % 30.0*10-4

(1.5*10-4) 
1.6 % 

ABB-PMM(10) 1.7*10-4

(8.3*10-4) 
0.3 % -1.4*10-4

(1.6*10-4)  
-0.1 % 

ABB-IC(10) 4.6*10-4

(0.8*10-4) 
0.8 % 29.8*10-4

(1.5*10-4) 
1.6 % 

Table 2: Simulation estimates of biases of estimators of  and  for different imputation 
methods, assuming MAR and correct imputation model. Standard errors of bias estimates are 
below the estimates in parentheses. 

1θ 2θ

 

First, imputation under ideal model conditions is considered, i.e. under a correct imputation 

model and a MAR nonresponse mechanism. From table 2 it can be seen that almost all of the 

estimators are approximately unbiased. All predictive mean matching methods (PMM) 

perform well with none of the biases being significant. Higher biases are found for the 

imputation methods based on imputation classes (i.e. for IC(10), DA-IC(10) and ABB-IC(10)), 

some of them being statistically significant. However, the biases are all below 2%. The increase 

in the bias for the IC methods is thought to be related to the definition of the imputation 

classes and may depend on the width of the classes. It is found that if the imputation classes 
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are defined poorly (e.g. if the true parameter value is close to an imputation class boundary) 

bias can be introduced. Given the additional disadvantage of these methods that the definition 

of the boundaries of the classes are somewhat arbitrary, these methods may be regarded as less 

attractive than PMM methods. Although methods based on imputation classes are often 

promoted in the literature because of their simplicity (Kalton and Kasprzyk, 1986; Kim and 

Fuller, 2004) and are commonly used in practice in the social sciences and in official statistics, 

a note of caution should therefore be applied when using such methods. For comparison 

parametric methods (i.e. REG IMP(10) and DA-REG IMP(10)) are also analysed, showing a 

good performance under ideal model conditions, where residual assumptions hold 

approximately.  

Of interest is the performance of the imputation methods under misspecification of 

underlying models and violations of assumptions. Table 3 shows the performance of the 

fractional nearest neighbour method (PMM(10)), as an example, under misspecification of the 

imputation model and under violation of the assumption of a MAR nonresponse mechanism. 

Misspecification of the imputation model means that the variable  is generated using a 

complex model in the simulation study, but the imputation model relating  to other variables 

fails to take account of important covariates or functions of covariates. Model M1 is the 

correct imputation model that corresponds to the model generating . Models M2 to M4 

indicate an increasing degree of misspecification (for details see table 3). It is found that under 

mild misspecifications the bias increases slightly. The bias is significant, however, it is still 

reasonably small (models M2 and M3). Under severe model misspecification (model M4) the 

bias increases to about 10%. However, even under such severe misspecification of the 

imputation model the method still performs relatively well. Other imputation methods, other 

than PMM(10), were also investigated under such violations of assumptions. Other forms of 

PMM, single, fractional or multiple imputation, performed similarly to PMM(10) with regards 

to bias. Hot deck methods based on imputation classes showed a tendency to a higher bias 

iy

iy

iy

 35



depending on the definition of the classes. As expected, it was found that regression 

imputation (either fractional or multiple) seemed to be more sensitive to misspecification of 

the imputation model than PMM. For example, for estimator  the relative bias under M3 

was around 5% and under M4 it was 14% for both REG IMP(10) and DA-REG IMP(10).  

1.̂θ

Table 3 also shows the performance of PMM(10) under a nonignorable nonresponse 

mechanism. It is assumed that  now depends on  and  and nonresponse in the 

simulation study is introduced using a logistic model that satisfies this alternative assumption. 

The bias for both point estimators is significant and has increased to about 10%. However, 

although a non-negligible increase in the bias is observed, the resulting estimates may not be 

unusable if the MAR assumption does not hold. The results indicate that MAR may still be a 

reasonable approximation even under nonignorable nonresponse, depending on the 

application and the variables used in the imputation model. Under misspecification of the 

nonresponse mechanism multiple nearest neighbour imputation (DA-PMM(10)) performed 

very similarly to fractional imputation with around 10% relative bias.  

ir iy ix

Model Mis-
specification 

Bias of 
ˆ.1θ  

Rel. Bias 

of ˆ.1θ  
Bias of ˆ.2θ Rel. 

Bias of 
ˆ.2θ  

ˆ. .( . )1s e θ  ˆ. .( . )2s e θ  

M1 (correct) 0.2*10-4 
(0.8*10-4) 

0.0 % -1.2*10-4 
(1.5*10-4) 

-0.1 % 2.56*10-3 4.88*10-3

M2 1.7*10-4 
(0.8*10-4) 

0.31 % -4.0*10-4 
(1.6*10-4) 

-0.2 % 2.55*10-3 5.09*10-3

M3 7.9*10-4 
(0.9*10-4) 

1.39 % -18.2*10-4 
(1.8*10-4) 

-1.0% 2.84*10-3 5.69*10-3

M4 56.0*10-4 
(1.9*10-4) 

9.95 % -153.5*10-4 
(2.5*10-4) 

-8.3 % 6.00*10-3 7.90*10-3

Nonignorable 
Nonresponse 

56.6*10-4 

(2.0*10-4) 
10.1 % 181.3*10-4 

(2.7*10-4) 
9.8 % 6.32*10-3 8.53*10-3

M1: correct imputation model 
M2: excludes interactions and square terms from the correct model 
M3: drops further covariates from model M2 
M4: includes only 2 of the most significant variables when predicting .  iy

Table 3: Simulation estimates of standard errors of estimators of 1θ  and 2θ  for PMM(10) 
under various misspecifications of the imputation model (but correct MAR nonresponse) and 
under nonignorable nonresponse (but correct imputation model).  
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In addition to bias, it is of interest to investigate the performance of the methods with regards 

to efficiency. Table 4 shows estimated standard errors of the two point estimators, 

corresponding to results in table 2, as well as an indication of variance reduction when 

compared to single value imputation. As expected, single value imputation in its basic form 

(here PMM(1)) shows the highest standard errors. PMM(1) is used as a reference for 

comparison. Both fractional imputation and multiple imputation reduce the variance of the 

estimators considerably compared to single imputation. For M =10, this reduction is around 

12-25% depending on the method. The reduction in variance is greatest for IC(10), and REG 

IMP(10) under correct model specifications; for PMM(10) the reduction is around 20%. 

Although the multiple imputation methods clearly perform better than single value imputation 

the variance is slightly greater than for the equivalent fractional imputation methods. For 

example, for  under PMM(10) the variance reduction is 0.83, under DA-PMM(10) it is 0.85 

and under ABB-PMM(10) it is 0.87. for IC(10) it is 0.78, for DA-IC(10) it is 0.83 and ABB-

IC(10) it is 0.88, indicating a greater efficiency for fractional imputation in comparison to MI. 

The effect is found to be relatively small for small or moderate nonresponse rates. Further 

investigation showed that for higher nonresponse rates (e.g. between 30% to 50%) the 

difference in efficiency is larger. The simulation variance under the ABB methods was in 

comparison to fractional imputation about 12% larger. This coincides with findings in Kim 

and Fuller (2004). Their study indicated that MI can be considerably less efficient than 

fractional imputation.  

1.̂θ

It is concluded that predictive mean matching based on fractional imputation (PMM(10)) and 

multiple imputation (DA-PMM(10)) seem to be the most promising approaches, relaxing the 

parametric assumptions in regression imputation (REG IMP(10)), including standard 

parametric multiple imputation (DA-REG IMP(10)), avoiding the potential bias of the 

imputation class methods (IC(10), DA-IC(10), ABB-IC(10)) and showing appreciable 

efficiency gains with respect to single imputation methods.  
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Imputation 
Method 

ˆ. .( )s e θ1  ˆ. .( )s e θ 2  ˆ( )
ˆ( )NN

V
V

θ
θ
1

1 1

 
ˆ( )

ˆ( )NN

V
V

θ
θ
2

1 2

 

REG IMP(10) 2.48*10-3 4.72*10-3 0.79 0.75 
PMM(1) 2.79*10-3 5.43*10-3 1 1 
PMM(10) 2.56*10-3 4.88*10-3 0.83 0.81 
IC(10) 2.48*10-3 4.72*10-3 0.78 0.76 
DA-REG IMP(10) 2.54*10-3 4.83*10-3 0.82 0.79 
DA-PMM(10) 2.58*10-3 4.92*10-3 0.85 0.82 
DA-IC(10) 2.55*10-3 4.86*10-3 0.83 0.80 
ABB-PMM(10) 2.61*10-3 4.90*10-3 0.87 0.81 
ABB-IC(10) 2.63*10-3 4.87*10-3 0.88 0.80 

Table 4: Simulation estimates of standard errors of estimators of 1θ  and 2θ  for different 
imputation methods, assuming MAR and correct imputation model. 

 

8. Conclusions 

This paper discusses a range of imputation methods to compensate for item-nonresponse in  

social science data and illustrates advantages and disadvantages of the methods. It aims to 

clarify some recent misconceptions and to highlight some new developments in this field. 

When applying imputation it is important to consider the type of analysis and the type of point 

estimator of interest. In particular, it should be distinguished if the goal is to produce unbiased 

and efficient estimates of means, totals, proportions and official aggregated statistics or a 

complete micro-data file that can be used for a variety of different analyses and by different 

users. Multiple imputation is an important and powerful form of imputation and has the 

advantage that variance estimation under imputation can be carried out comparatively easily. 

Fractional hot deck imputation is introduced with the aim of improving the efficiency and the 

sensitivity to model misspecifications of an imputed estimator.  

Based on an example from the social sciences the paper illustrates how to choose between 

different methods in practice. Parametric regression imputation, including standard multiple 

imputation, do not seem appropriate for situations where parametric assumptions are likely to 

be violated. Hot deck methods, however, are shown to better preserve distributional 
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properties, which is important for many applications in the social sciences. Forms of predictive 

mean matching imputation perform well even under misspecification of assumptions. To take 

advantage of multiple imputation and hot-deck properties semi-parametric forms of MI, such 

as the incorporation of hot deck within the imputation step of a data augmentation procedure, 

are proposed. In the application considered here, fractional and multiple predictive mean 

matching methods seem to be the most promising approaches with the fractional methods 

showing slight efficiency gains in comparison to multiple imputation. However, further 

research is needed to develop semi- and non-parametric methods and methods under 

nonignorable nonresponse and to make such methods easily applicable by social scientists.   
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