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Abstract

In this paper we present a strategy for speeding up the estimation of expected maximum flows

through reliable networks. Our strategy tries to minimize the repetition of computational effort

while evaluating network states sampled using the crude Monte Carlo method. Computational

experiments with this strategy on three types of randomly generated networks show that it reduces

the number of flow augmentations required for evaluating the states in the sample by as much as

52% on average with a standard deviation of 7% compared to the conventional strategy. This leads

to an average time saving of about 71% with a standard deviation of about 8%.

Keywords: Network Flows; Reliable Networks; Cold Start; Warm Start; Reliable Network Evalu-

ation Strategy.

1 Introduction

A network is defined as G = {V, A, s, t}, where V is the set of nodes; A is the set of arcs where each
element a ∈ A is of the form (i, j, wij), i, j ∈ V , wij ∈ Z+; and s ∈ V and t ∈ V are the source and
the terminal nodes respectively. For arc a = (i, j, wij), i, j, and wij are called the tail, the head, and
the capacity of the arc respectively. Arc a = (i, j, wij) is also referred to as arc (i, j). Networks can
be used to model a wide variety of real-world optimization problems (see e.g., Ahuja et al., 1993). An
important problem on networks is the maximum flow problem (see e.g., Ahuja et al., 1993), in which
one computes the maximum amount of flow that can be routed from s to t through the network. The
maximum flow is a constant for a given network and a given pair of source and terminal nodes.

A reliable network is a network in which each arc has a certain probability of being functional. Arcs
in reliable networks are represented as a = (i, j, wij , pij) where i, j and wij have their usual meanings,
and pij , called the reliability of arc (i, j), is the probability that arc (i, j) ∈ A is functional at any point
in time. It is a more realistic representation of networks with imperfect elements, and is often used to
model telecommunication networks. Reliable networks are observed in different states, where each state
is a conventional network defined on a subset of arcs in the reliable network, which are functional at
the point of interest. Formally defined therefore, a network state Si = {V, Ai, s, t} of a reliable network
(V, A, s, t), is a conventional network where V refers to the node set of the network, Ai ⊆ A refers to
the set of arcs in A which are functional in this state, and s, t are the source and the terminal nodes
respectively. A reliable network assumes each state with a probability that can be computed using the
reliability values of the arcs present in the network. Since the maximum flows in different states are
different, the maximum flow through a reliable network is a random variable and not a constant as in
the case of conventional networks.
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The problem of evaluating expected maximum flows in reliable networks occurs most often as a
subproblem in the reliable network design problem. In a reliable network design problem, one is given
a ground set A of imperfect arcs joining nodes belonging to V , a source node s ∈ V and a terminal
node t ∈ V , and is asked to choose a set of arcs A ⊆ A such that the resultant network is “best”
in terms of sending flow from s to t. In this paper, the “best” network is considered to be one for
which the expected value of maximum flow from s to t is the highest possible. One way of finding
such a network is to generate a subset of the 2|A| candidate reliable networks, each defined on the node
set V , and an arc set which is an element of the power set P (A); computing the expected maximum
flow from s to t through each of the candidate networks; and then choosing that network in which
the expected maximum flow is the largest possible. Since a network design problem with a ground
set of reasonable size requires one to compute the expected maximum flows in a very large number of
candidate reliable networks, any speedup in computation of expected maximum flows is useful while
solving reliable network design problems. In this paper, we present a technique that has been seen to
speed up computation of expected maximum flows through reliable networks by up to 71%.

In this work, we consider reliable networks that have imperfect arcs and perfect nodes. Arc failures
are assumed to be independent. We do not model imperfect nodes separately, since an imperfect node
can be modeled using an imperfect arc between two perfect nodes (see, for example, Ball et al., 1996).

The paper is organized as follows. Section 2 provides a review of the literature on maximum flow
evaluation in reliable networks. In Section 3, we describe a strategy for estimating the expected maxi-
mum flow in a reliable network. In Section 4 we report our computational experience with the proposed
strategy using the conventionally used strategy for estimating maximum flow as a base. Section 5
provides a summary of the contributions of the paper and points out directions for future research.

2 Literature Review

Expected maximum flows are often computed in reliable networks in order to compare two or more
reliable networks defined on the same node set, and having the same source and terminal nodes. So
in this context, it is an example of a network evaluation problem. This problem is NP-hard (see
Valiant, 1979; Provan and Ball, 1983), and its solution approaches can be broadly classified into two
classes; exact approaches and estimation through Monte Carlo simulations. There is also literature on
generating bounds for this problem.

Exact algorithms for this problem take time exponential in the number of arcs and therefore can
only be used for networks with very small arc sets. Examples of such algorithms include application
of factoring theorem (see Lee, 1980), path and cut enumeration based techniques (see Evans, 1976;
Mirchandani, 1976). Polynomial time exact algorithms exist for networks with special structural prop-
erties, like the series parallel networks (see Satyanarayan, 1982), networks in which all but a few arcs
have deterministic capacities (see Somers, 1982), and networks that are 1-critical i.e. networks that are
minimal with respect to withstanding any single component failure (see Ball et al., 1995).

The majority of the network evaluation literature uses crude Monte Carlo and its more efficient
variants like homogeneous Monte Carlo, homogeneous Monte Carlo with variance reduction, etc., to
estimate the desired measure of performance. For details on various Monte Carlo techniques used
in reliable network evaluation see Fishman (1986); Nel and Colbourn (1990); Buchsbaum and Mihail
(1995). The procedure that all of these methods use to estimate the performance measure can be
summarized as follows. Several states of the network are first generated based on the probability of
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each arc in the reliable network being functional. The maximum flow from the source to the terminal
node is determined for each of the network states generated using one of the existing maximum flow
algorithms. These maximum flow values are then aggregated to estimate the expected maximum flow for
the reliable network. All Monte Carlo simulation based methods for estimating expected maximum flow
through reliable networks compute the maximum flow through each of the sampled states independently.
Only one paper, Kashyap et al. (2006), makes use of a strategy for evaluating the maximum flow in a
network by utilizing information obtained while computing the maximum flow in a related network.

Analytical bounds have also been proposed only for networks with special structural properties.
Bounds proposed for general networks are Monte Carlo based, like the bounds proposed by Carey
and Hendrickson (1984), the most probable states based bounds (see Li and Silvester, 1984) and their
improvements (see Colbourn and Harms, 1993). A detailed review of the literature on reliable network
evaluation problem and solution approaches can be found in Colbourn and Harms (1993) and Ball et al.
(1996).

The work that we describe in this paper uses the maximum flow through a network state and
its residual network to construct the maximum flow in a related state. In this respect, our work is
most closely related to the work presented in Kashyap et al. (2006). However, the algorithm hinted in
Kashyap et al. (2006) is similar to the easier of the two algorithms developed here; we propose another
completely new algorithm which is integral to our speeding up process.

3 Speeding Up the Estimation of Expected Maximum Flows

We assume that the estimation is carried out using Monte Carlo simulations, where a set of network
states of the reliable network are sampled, the maximum flow in each of the sampled states is obtained
through some flow augmentation algorithm (see, e.g., Ahuja et al., 1997) and the expected maximum
flow is computed as the average of the maximum flows through the sampled states. We use the following
notation to describe our strategy of speeding up the estimation of expected maximum flow through a
reliable network.

Definition (Cold Start). A state S1 of a reliable network is said to be cold started if the maximum flow
in state S1 is computed without using information about any other state of the network.

Definition (Cold Start Evaluation Strategy). The expected maximum flow of a reliable network is said
to be estimated using a cold start evaluation strategy (CSES) if the estimation is done using Monte
Carlo simulation, where all the sampled states are cold started.

Definition (Warm Start). A state S1 of a reliable network is said to be warm started from another
state S2 of the same network if the maximum flow in state S1 is computed using the maximum flow in
state S2, and the residual network obtained after evaluating the maximum flow in S2.

Definition (Warm Start Evaluation Strategy). The expected maximum flow of a reliable network is
said to be estimated using a warm start evaluation strategy (WSES) if the estimation is done using
Monte Carlo simulation, where some of the sampled states are cold started, and the remaining are
warm started from other states in the sample.

Conventionally the estimation of expected maximum flow in a reliable network is done using a cold
start evaluation strategy. Each network state is cold started using one of the well-known maximum flow
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algorithms (see, e.g., Ahuja et al., 1997). In the warm start evaluation strategy, some of the network
states are warm started from some other network states. The basic idea behind warm start is the
following. Given two network states S1 and S2 of the same reliable network, S2 can be obtained from
S1 by either removing some arcs from it, or by adding some arcs to it, or by a combination of both.
Hence, if we have efficient algorithms for recomputing the maximum flow in a network after one or more
arcs are added to it, and for recomputing the maximum flow after one or more arcs are removed from
it, then we can design an efficient algorithm for warm starting state S2 from state S1.

In this section we first describe two algorithms, called ADD-ARC and DELETE-ARC. ADD-ARC

re-computes the maximum flow in a network after one or more arcs are added to it. DELETE-ARC

re-computes the maximum flow in a network after an arc is deleted from it. Both these algorithms use
the residual network obtained after maximum flow computations in a network state to achieve their
output. We then suggest the use of these two algorithms in the heuristic GENERATE-SEQUENCE to
develop an efficient strategy of estimating the expected maximum flow through a reliable network.

3.1 The arc addition algorithm ADD-ARC

Consider two network states S1 = {V, A1, s, t} and S2 = {V, A2, s, t}, A1 ⊂ A2. Clearly, state S2 can be
obtained by adding one or more arcs to state S1. Given the maximum flow M1 through state S1 and its
residual network Sr

1 = {V, Ar
1, s, t}, the arc addition algorithm outputs the maximum flow M2 through

state S2 and the corresponding residual network Sr
2 = {V, Ar

2, s, t}. Algorithm ADD-ARC describes this
algorithm.

Algorithm 1 ADD-ARC: The Arc Addition Algorithm

Input: Residual network Sr
1 for S1 = {V, A1, s, t}, maximum s–t flow M1 through S1, state S2 =

{V, A2, s, t}, A1 ⊂ A2.
Output: Maximum s–t flow M2 through S2, residual network Sr

2 for S2.
Steps:

Step 1: (Initialization) Set Sr
2 ← {V, Ar

1 ∪ (A2 \A1), s, t}, M2 ←M1. Go to Step 2.
Step 2: (Termination) If there is no augmenting path from node s to node t in Sr

2 , then output Sr
2 and

M2, and stop. Else go to Step 3.
Step 3: (Iteration) Augment the s–t path found in Step 2 and update Sr

2 and M2. Go to Step 2.

Theorem 1. Given the residual network Sr
1 of state S1, the set A2 \ A1, and the maximum s–t flow

M1 through state S1, ADD-ARC correctly determines the maximum s–t flow M2 through state S2.

Proof. By contradiction, assume that the flow M2 output by ADD-ARC is suboptimal. Then there
must exist a flow augmenting path in the residual network Sr

2 . If such a path exists, then the termination
condition in Step 2 is not satisfied, and ADD-ARC will not terminate but send flow along the augmenting
path.

3.2 The arc deletion algorithm DELETE-ARC

Consider two states S1 = {V, A1, s, t} and S2 = {V, A2, s, t} of a reliable network, where A2 = A1 \
{a}. This means that state S2 can be obtained by deleting arc a from S1. Given the maximum s–t
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flow M1 through state S1 and the corresponding residual network Sr
1 = {V, Ar

1, s, t}, the arc deletion
algorithm determines the maximum s–t flow M2 through state S2. Algorithm DELETE-ARC describes
this algorithm.

Algorithm 2 DELETE-ARC: The Arc Deletion Algorithm

Input: Residual network Sr
1 for S1 = {V, A1, s, t}, maximum s–t flow M1 through S1, state S2 =

{V, As, s, t}, A1 \A2 = {(i, j)}.
Output: Maximum s–t flow M2 through S2, residual network Sr

2 for S2.
Steps:

Step 1: (Initialization) Set Sr
2 ← {V, Ar

1 \ {(i, j)}, s, t}, M2 ←M1 − fij , where fij is the flow along arc
(i, j) in Sr

1 , excess(i)← fij and excess(j)← −fij . Go to Step 2.
Step 2: (Termination) If excess(i) = excess(j) = 0, then output Sr

2 , M2 and stop. Else go to Step 3.
Step 3: (Iteration)

Step 3a: If there exists a path P1 from node i to node j in the network Sr
2 then, augment a

flow of f1 = min(excess(i), min(l,m)∈P1
wlm) on path P1. Update Sr

2 , M2 ← M2 + f1,
excess(i)← excess(i)− f1, excess(j)← excess(j) + f1; go to Step 2.

Step 3b: Else if excess(i) > 0 then, search for a path P2 from node i to node s in network Sr
2

and augment a flow of f2 = min(excess(i), min(l,m)∈P2
wlm) on this path. Update Sr

2 ,
excess(i)← excess(i)− f2. If excess(j) < 0 then, search for a path P3 from node t to
node j in network Sr

2 and augment a flow of f3 = min(−excess(j), min(l,m)∈P3
wlm)

on this path. Update Sr
2 , excess(j)← excess(j) + f3. Go to Step 2.

Theorem 2. Given the residual network Sr
1 of state S1, the arc a, and the maximum s–t flow M1

through state S1, DELETE-ARC correctly determines the maximum s–t flow M2 through state S2.

Proof. Note that M2 ≤M1.

If the termination condition in Step 2 is satisfied immediately after Step 1, then fij = 0, M1 = M2

and the output from DELETE-ARC is trivially correct.

Let us now consider the situations where termination occurs in Step 2, reached after executing Step
3. If the algorithm terminates when Step 2 is reached immediately after executing Step 3a, then the
whole of the flow along arc (i, j) could be re-routed through the network and M1 = M2. Obviously, in
this case DELETE-ARC outputs a correct solution. If however, the algorithm terminates when Step 2 is
reached immediately after executing Step 3b, then M2 < M1. Assume, by contradiction, that the flow
M2 output by DELETE-ARC in such a situation is not the maximum flow through state S2. Then there
must be at least one augmenting path from s to t in the residual network Sr

2 output by the algorithm.
Such an augmenting path can exist in one of the following four ways.

1. The augmenting path does not include any (reverse) arc generated during the re-routing process
in Step 3 of DELETE-ARC. But this implies that all the arcs in the augmenting path existed in
Sr

1 , which in turn implies that M1 was not the maximum flow through S1. Therefore, such an
augmenting path can not exist.

2. The augmenting path, say AP , includes (reverse) arcs generated during the re-routing of flow from
i to s in Step 3b. Let AP = s, . . . , m, n, . . . , t and let (m, n) be one of the arcs generated during
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the re-routing of flow along P = i, . . . , n, m, . . . , s. At the stage when such a path is generated
in the algorithm, excess(j) ≤ 0. If excess(j) < 0 there exists at least one path from t to j say,
A = t, . . . , j, which implies that a path Q = i, . . . , n, . . . , t, . . . , j existed in the network before
re-routing the flow along path P . Such a path would have been identified during Step 3a of the
algorithm and Step 3b would not be reached. If excess(j) = 0 then Q would have existed before
the augmentation of the last t to j path and Step 3b would not be reached. Therefore such an
augmenting path can not exist.

3. The augmenting path, say AP , includes (reverse) arcs generated during the re-routing of flow from
t to j in Step 3b. Let AP = s, . . . , m, n, . . . , t and let (m, n) be one of the arcs generated during
the re-routing of flow along P = t, . . . , n, m, . . . , j. At the stage when such a path is generated in
the algorithm, excess(i) ≥ 0. If excess(i) > 0, then there exists at least one i to s path, i, . . . , s,
which implies that a path Q = i, . . . , s, . . . , m, . . . , j existed in the network before re-routing the
flow along path P . Such a path would have been identified in Step 3a of the algorithm and Step
3b would not be reached. If excess(i) = 0, then Q would have existed before the augmentation of
the last i to s path and Step 3b would not be reached. Therefore such an augmenting path can
not exist.

4. The augmenting path includes (reverse) arcs, but only those which are not a part of any re-routing
of i to s flows or t to j flows in Step 3b. This would imply that a path of the form i . . . s . . . t . . . j
exists in the residual network Sr

2 . If such a path exists and excess(i) > 0, then DELETE-ARC

would have utilized this in Step 3a. If such a path exists and excess(i) = 0, such an augmenting
path would imply that M2 > M1. Hence such an augmenting path can not exist.

Since none of the four alternatives is possible, we conclude that DELETE-ARC outputs the correct
maximum flow through state S2.

Remark 3. A single execution of ADD-ARC can add multiple arcs to a network state, but a single
execution of DELETE-ARC can remove exactly one arc from a network.

3.3 Generating the sequence of evaluation of states through GENERATE-

SEQUENCE

To estimate the expected maximum flow using Monte Carlo simulation, a subset of all the states
of the network is generated randomly, and the maximum flow in each of the states in the subset is
computed. The expected maximum flow in the reliable network is estimated by computing the average
of the maximum flow values thus obtained. The primary idea behind warm start is to use the residual
network obtained from the computation of maximum flow in one state to compute the maximum flow
in another state.

In order to use the warm start evaluation strategy, we have to generate the sequence in which we
consider network states for maximum flow computation, and for each state being considered, we have
to determine whether to cold start that state, or to warm start it from some other state for which the
maximum flow has already been computed. Later in this section, we will model this decision problem
as a minimum directed spanning forest problem.

Note that as a consequence of Remark 3, if we have to warm start state S2 = {V, A2, s, t} from a
state S1 = {V, A1, s, t} of a reliable network {V, A, s, t}, we have to use DELETE-ARC |A1 \A2| times,
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and ADD-ARC at most once (only if |A2\A1| > 0). Given a value of |A2\A1|, a smaller value of |A1\A2|
is likely to reduce the time taken to warm start S2 from S1. Similarly, given a value of |A1 \ A2|, a
smaller value of |A2 \A1| is likely to result in shorter warm start time. As a result we see that a larger
number of common arcs between two states is likely to increase the time saving when we warm start
one from the other. If the values of |A1 \ A2| and |A2 \ A1| are large however, it is more efficient to
compute the maximum flows in the two states independently.

We define the following measure of distance between two states of a reliable network for the purpose
of deciding whether to warm start one state from the other.

Definition (distance). The distance d(Si, Sj) from state Si = {V, Ai, s, t} to state Sj = {V, Aj , s, t} of
a reliable network is given by

d(Si, Sj) = |Ai \Aj |+ |Aj \Ai|.

We can now describe how to convert the problem of generating the sequence and manner of evaluating
network states into a minimum spanning forest problem. Given a set S = {Si} of states of a reliable
network and a threshold τ , we first create a digraph in the following manner. We define a node in
the digraph for every state in S. For each pair (Si, Sj), Si, Sj ∈ S, we define an arc from the node
corresponding to Si to the node corresponding to Sj iff d(Si, Sj) ≤ τ . The weight associated with the
arc if it is present is d(Si, Sj). Notice that the underlying graph of this digraph may not be connected.
We next find a minimum directed spanning forest in the digraph thus generated. To generate the
evaluation strategy, we consider each of the trees in the forest in arbitrary sequence. For each tree in
the minimum spanning forest, we cold start the root at first. For each arc in the tree for which the
maximum flow in the state corresponding to the tail has already been computed, we warm start the
state corresponding to the head of the arc from the state corresponding to its tail.

While this warm start evaluation strategy reduces the total number of flow augmentations required
by the cold start evaluation strategy, preliminary computational experiments reveal that the time
required by any algorithm to compute the minimum spanning forest is significant and negates any time
advantage gained by using the warm start evaluation strategy. Hence we propose the simplistic heuristic
algorithm GENERATE-SEQUENCE to obtain the sequence in which each state would be considered in
the warm start evaluation strategy and the manner in which the maximum flow in each state would be
obtained. This heuristic first generates a pre-specified number k of states, labeled N1 through Nk, of
the reliable network which may not be in S, but which have a large number of arcs in common with
some of the states in S (see Steps 1 through 4 in Algorithm GENERATE-SEQUENCE). Each of these
states have up to a pre-specified number Lu of functional arcs. It then connects each state Si ∈ S to
that state Nj , 1 ≤ j ≤ k, which has the maximum number of arcs in common with it and satisfies
d(Nj , Si) ≤ τ (see Steps 5 through 7). It then prescribes that all states in S that are not connected to
any of the states N1 through Nk and the states N1 through Nk themselves be cold started, and each of
the remaining states in S be warm started from the residual network of the state Nj that it is connected
to (see Steps 8 through 10).

4 Computational Experience

We compared the performance of the warm start evaluation strategy (WSES) to that of the cold start
evaluation strategy (CSES) conventionally used in the literature. We used the Generic Augmenting
Path algorithm (see Ahuja et al., 1993) for determining maximum flows. We compared the performance
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Algorithm 3 GENERATE-SEQUENCE: Heuristic to Generate the Sequence in which States are Evalu-
ated

Input: A set of states S of a reliable network, parameters k, Lu, and τ .
Output: Sequence and manner of computing maximum flows in the states in S.
Steps:

Step 1: (Ni initialization) For each arc a generate pa = |Sa|
|S| where Sa = {S ∈ S : a ∈ AS}. Set i← 1.

Go to Step 2.
Step 2: (Ni termination) If i > k go to Step 4, else go to Step 3.
Step 3: (Ni generation) Set Ai ← ∅. Consider an arc a ∈ A and generate a random number r. If

r ≤ pa, set Ai ← Ai ∪ {a}. Repeat for different arcs until |Ai| = Lu or until all arcs have been
considered. Go to Step 4.

Step 4: (Update) For each arc a ∈ Ai, set pa ← min{pa, 1− pa}. Set Ni ← (V, Ai, s, t), i← i + 1, and
go to Step 2.

Step 5: (Forest initialization) Set F ← ∅, and f ← 1. Go to Step 6.
Step 6: (Forest termination) If f > |S| go to Step 8, else go to Step 7.
Step 7: (Forest generation) For Sf ∈ S, find j such that d(Nj , Sf ) = min1≤i≤k{d(Ni, Sf )}. If

d(Nj , Sf ) ≤ τ then set F ← F ∪ (Nj, Sf ). Set f ← f + 1, and go to Step 5.

Step 8: (Strategy initialization) Evaluate the maximum flows in all states of S that are not connected
from any Ni through arcs in F in random order, and evaluate them using cold start. Set j ← 1.
Go to Step 9.

Step 9: (Strategy termination) If j > k, stop. Else go to Step 10.
Step 10: (Strategy generation) Evaluate the maximum flow through Nj using cold start. For each arc

of the form (Nj , Sf ) ∈ F , evaluate the maximum flow in Sf through warm start, using the
residual network from state Nj. Set j ← j + 1, and go to Step 9.

of the two strategies using two ratios:

time ratio RT =
computational time using the WSES

computational time using the CSES
,

and augmentation ratio RA =
number of flow augmentations using the WSES

number of flow augmentations using the CSES
.

In this section we report the results of our comparison. In Section 4.1 we describe how we generated
the test problems on which we compared the two strategies. In Section 4.2 we present the results of
our experiments and follow it up in Section 4.3 with a discussion on some interesting observations from
our computational experience.

4.1 Test Bed Generation

Since no standard data set is available for reliable network flow problems, we generated our own data
sets to test the two strategies. We generated three types of problem instances, completely random
network instances, layered network instances, and grid network instances; see Figure 1 for examples
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of these three types of networks. The reason to consider three types of instances was an observation
made in Ahuja et al. (1997) that maximum flow problems on completely random networks are generally
easy to solve and randomly generated layered and grid networks are generally harder to solve. We next
describe the manner in which we generated these three types of networks.

A random network

A layered network with L = 4 and W = 3

A grid network with L = 4 and W = 3

Figure 1: Types of networks in the test bed

Completely random networks: To generate a completely random network on n nodes with around
m arcs, we scatter n points randomly on a square of 100× 100 units and label them 1 through n. Each
node i is connected to a random number di of its nearest neighbors, where di ranges between [1, ⌈2m/n⌉].
To ensure that the network contains at least one s–t path, we ensure that arcs (i, i + 1) exist in the
network, 1 ≤ i < n. For arcs (s, j), j ∈ V \ s and (i, t), i ∈ V \ t, we assign capacities randomly in the
range [50000, 100000]. For the remaining arcs we assign capacities randomly in the range [500, 10000].
All arcs are assigned reliability randomly in the range [0.8, 1.0]. For our experiments, we generated 20
completely random network instances with n = 50, and m = 500, 20 more with n = 75, and m = 1350,
and another 20 with n = 100 and m = 2400.

Layered networks: Layered networks are characterized by three parameters, the width (W ) of the
network, the length (L) of the network, and the average outdegree (d) of all nodes in the network except
the source and terminal nodes. The number of nodes in such a network is n = LW + 2. The nodes
are arranged in L + 2 layers, where the first layer consists of only the source node and the last layer
consists of only the terminal node. Each of the remaining layers contains W nodes. The source node is
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connected to all the nodes in the second layer, and all the nodes in the last but one layer are connected
to the terminal node. Each node in layer i, 2 ≤ i ≤ L is connected to a random set of r nodes in layer
i + 1, where r is a random number drawn from the interval [1, 2d− 1]. For arcs (s, j), j ∈ V \ s and
(i, t), i ∈ V \ t, we assign capacities randomly in the range [50000, 100000]. For the remaining arcs
we assign capacities randomly in the range [500, 10000]. All arcs are assigned reliability randomly in
the range [0.8, 1.0]. According to Ahuja et al. (1997) results for layered networks with L = 2W can be
generalized to other layered networks with different L/W ratios, so we chose L = 2W for the networks
we generated. For our experiments we generated 20 network instances with W = 8, L = 16, and d = 4,
20 more with W = 12, L = 24, and d = 6, and another 20 with W = 14, L = 28 and d = 7.

Grid networks: Grid networks are characterized by two parameters, the width (W ) of the network
and the length (L) of the network. The number of nodes in such a network is n = LW + 2. The nodes
are arranged in L + 2 layers, where the first layer consists of only the source node and the last layer
consists of only the terminal node. Each of the remaining layers contains W nodes. The source node is
connected to all the nodes in the second layer, and all the nodes in the last but one layer are connected
to the destination node. The nodes in each of the layers from layer 2 to layer L + 1 are ordered using
numbers from 1 through W. Node i in layer j is connected to nodes i − 1 and i + 1 in layer j, and to
nodes i− 1, i, and i + 1 in layer j + 1 if such nodes exist. For arcs (s, j), j ∈ V \ s and (i, t), i ∈ V \ t,
we assign capacities randomly in the range [50000, 100000]. For the remaining arcs we assign capacities
randomly in the range [500, 10000]. All arcs are assigned reliability randomly in the range [0.8, 1.0].
Again according to Ahuja et al. (1997) results for grid networks with L = 2W can be generalized to
other grid networks with different L/W ratios, so we chose L = 2W for the networks we generated. For
our experiments we generated 20 network instances with W = 8 and L = 16, 20 more with W = 12
and L = 24, and another 20 with W = 16 and L = 32.

4.2 Computational Results

We compared the performance of the warm start evaluation strategy and the cold start evaluation
strategy on the three types of networks described in Section 4.1. For this comparison we programmed
both the strategies in C using similar data structures, compiled them with the gcc compiler, and
executed them on a computer with a 1.73 GHz Pentium M processor with 768MB RAM running Linux.
The problem sizes in each of the network types were chosen such that the numbers of arcs in the
three types of networks were similar. Thus, for each type of network considered, problem instances
had either around 500 arcs, or around 1350 arcs, or around 2400 arcs. As mentioned earlier, for
each problem size we generated 20 problem instances. For each problem instance, we estimated the
expected maximum flow five times. For each estimation, we chose a new random sample of 10000 states.
Therefore the results that we state in this section are averages of 100 estimations. Through preliminary
experiments we found that we obtain high quality results when parameters k, τ , and Lu required for
Algorithm GENERATE-SEQUENCE are set to 5, |A|, and |A| respectively. Therefore, we carried out our
experiments using these parameter values.

Table 1 presents a summary of the results of our experiments on completely random networks. The
first column of the table shows the number of nodes in the network, and the second column shows the
number of arcs in the network averaged over 20 randomly generated instances for the same number of
nodes. Columns 3 and 5 report the average values of RT and RA over the 20 instances, and columns
4 and 6 report the standard deviations of the RT and RA values. So, for example, in estimating the
expected maximum flow through 20 randomly generated reliable networks with 75 nodes and with on
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average 1343.25 arcs, our warm start evaluation strategy required 31.13% of the time taken by the cold
start evaluation strategy on average, with a standard deviation of 7.04%. In this process, our warm
start evaluation strategy executed, on average, 47.36% of the number of flow augmentations executed
by the conventional cold start evaluation strategy with a standard deviation of 4.09%. Figure 2 presents
the frequency distributions of RT and RA values for completely random networks of different sizes.

Table 1: Performance of warm start strategy for completely random networks

no. of mean no. mean of s.d. of mean of s.d. of
nodes of arcs RT values RT values RA values RA values

50 537.40 0.3573 0.0875 0.4725 0.0676
75 1343.25 0.3113 0.0704 0.4736 0.0409
100 2408.20 0.2941 0.0772 0.4736 0.0671

Tables 2 and 3 present the results of our experiments on randomly generated layered networks and
grid networks respectively while Figures 3 and 4 show the corresponding frequency distribution of RT

and RA values.

Table 2: Performance of warm start strategy for random layered networks

no. of mean no. mean of s.d. of mean of s.d. of
W L d nodes of arcs RT values RT values RA values RA values

8 16 4 130 498.35 0.5511 0.1112 0.9596 0.1118
12 24 6 290 1409.85 0.3818 0.0577 0.9008 0.0637
14 28 7 394 2567.10 0.2793 0.0459 0.7698 0.0578

Table 3: Performance of warm start strategy for random grid networks

no. of no. of mean of s.d. of mean of s.d. of
W L nodes arcs RT values RT values RA values RA values

8 16 130 570 0.5083 0.0877 0.9487 0.0914
12 24 290 1334 0.4924 0.0912 1.0146 0.0823
16 32 514 2418 0.4781 0.0888 1.0562 0.1071

4.3 Discussion

From Tables 1 through 3, we see that the warm start evaluation strategy outperforms the conventional
cold start evaluation strategy for all the network types considered in our experiments. Given the
standard deviation values of the ratios, it is clear that this improvement is statistically significant.
We also see that the domination of the warm start evaluation strategy over the cold start evaluation
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Figure 2: Frequency distributions of Time Ratio (RT ) and Augmentation Ratio (RA) values for com-
pletely random networks

strategy gets even more pronounced as problem sizes increase, thus making the warm start evaluation
strategy a more attractive choice for larger problems.

From these tables, we also see that the averages of RA values are consistently higher than the
averages of RT values for all the problem sizes and types considered in our experiments. From our
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Figure 3: Frequency distributions of Time Ratio (RT ) and Augmentation Ratio (RA) values for random
layered networks

experiments, we found that the augmenting paths found during the execution of the DELETE-ARC

algorithm are, on average, significantly shorter than the augmenting paths found during cold start.
Therefore, the time required for searching for a path and augmenting flow along it is considerably lower
for the DELETE-ARC algorithm than while using cold start. This observation does not hold for the
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Figure 4: Frequency distributions of Time Ratio (RT ) and Augmentation Ratio (RA) values for random
grid networks

ADD-ARC algorithm of the warm start evaluation strategy. Therefore, in the warm start evaluation
strategy, if the number of arcs that are being deleted is significantly higher than the number of arcs
being added, the execution time per flow augmentation is less than that for the cold start evaluation
strategy. The savings in the computational time due to warm start evaluation strategy consist of two
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parts, savings due to reduction in the number of flow augmentations, and savings due to reduction in
the computational time per flow augmentation. Only the first part contributes to the savings in the
number of flow augmentations. Hence the RT values are seen to be smaller than the RA values.

Note that the RT /RA ratios are smaller for layered and grid networks than those for completely
random networks. This implies that the time saving per augmentation is more for layered and grid
networks. This is because the length of an augmenting path for layered and grid networks under the
conventional strategy is bounded below by the L +1, where L is the length of the network as described
in Section 4.1. Therefore every augmenting path in the conventional strategy involves at least L + 1
arcs. For the warm start evaluation strategy this lower bound is essentially 2 when Lu is equal to
the number of arcs in the network. Therefore the savings in computational time per augmentation are
larger for such networks compared to the completely random network.

From other experiments which we do not report here, we see that both RT and RA values increase
when the arc reliabilities are lowered. This is explained when we consider the nature of randomly
generated network states of reliable networks. When the arc reliabilities are high, randomly generated
network states have a large number of functional arcs. So, given two randomly generated network states
the number of arcs that are functional in one of the states and not functional in the other is relatively
small. When the arc reliabilities are closer to 0.5, then each state has fewer arcs functional, and hence
the number of arcs that are functional in one of the states and not functional in the other is larger.
Empirically, we have tested this on a network with 75 nodes and 1300 arcs. When the arc reliabilities
are drawn from the interval [0.8, 1.0], the average number of arcs functional in one of a pair of network
states and not in the other is 463.57, while for the same network, if the arc reliabilities are drawn from
the interval [0.6, 0.8] the average number increases to 1040.97. Therefore, if the arc reliabilities in a
reliable network are lowered, then to use the residual network of one state to compute the maximum flow
in another, one must make a larger number of calls to DELETE-ARC and the number of arcs added in
ADD-ARC also increases. As a result the time required for the warm start evaluation strategy increases
and the savings in computational times and flow augmentations both reduce. When the reliabilities of
arcs in the reliable network reduce further to values significantly lower than 0.5, the number of arcs
that are functional in one of the states and not functional in the other again become relatively small,
but under these conditions, cold start is quite efficient compared to warm start, since the number of
s–t paths in a network state of such networks is small.

5 Summary

In this paper we presented a new evaluation strategy for estimating the expected maximum flow through
a reliable network. Our strategy, called the warm start evaluation strategy, tries to minimize the
repetition of computational effort while estimating the expected maximum flow through a reliable
network by using the information obtained during the evaluation of one network state to evaluate other
state(s). We compared the performance of our strategy with that of the conventionally used strategy
and found that our strategy reduces the time required by as much as 70.59% on average, compared to
the time required by the conventional strategy. Our strategy reduces the number of flow augmentations
by as much as 52.64% on average. This reduction in evaluation time is likely to be beneficial while
designing reliable networks in which one needs to carry out a large number of such expected maximum
flow estimations. This implies that using our strategy, a network designer can estimate the expected
maximum flow through the network using a larger sample in a given amount of time, thus getting
estimates with narrower confidence interval. We have also reported that the dominance of the warm start
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evaluation strategy over the cold start evaluation strategy reduces when the reliabilities of individual arcs
reduce. However in actual applications on telecommunication networks, arc reliabilities are generally
high; for example, fiber optic connections have reliabilities greater than 0.95. Therefore, in designing
such networks, the warm start evaluation strategy outlined here can still result in considerable amount
of time savings.

To the best of our knowledge such a strategy has not been reported in the literature. The only work
that comes close to our work is a recent paper by Kashyap et al. (2006). It appears that the paper
makes use of an algorithm similar to ADD-ARC, although it does not mention it explicitly. It only deals
with a special case of a layered network with L = 2.

The work reported in this paper can be extended in a few ways. First, our Algorithm GENERATE-

SEQUENCE does not generate an optimal evaluation strategy, simply because such a strategy is too
expensive to generate. An interesting extension would be to evaluate alternate evaluation strategy
generation mechanisms which have a better tradeoff between execution times and evaluation strategy
quality. Secondly, one can examine whether strategies similar to ours can be used when the reliabilities
of arcs in a network have lower values. Finally, one can look at other network flow estimation problems
on reliable networks and develop similar strategies.
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