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Social and Economic Impact of Disasters: Estimating the Threshold 
between Low and High Levels of Risk 

Clovis Freire 

1. Introduction 
 
Throughout the world, governments and civil society are faced with the challenge of identifying 
the areas that are at risk of extreme disaster events. Catastrophes such as the earthquake and 
tsunami that hit Japan in March 2011 or the floods in Pakistan that have submerged almost one-
fifth of the country’s total land area in 2010 - two recent natural disasters in Asia-Pacific that 
resulted in large social and economic impact – are reminders for Governments in developing and 
developed countries alike of the unavoidable need to be prepared by reducing the risk of 
disasters. 
 
 Disaster risk is a function of the hazard (e.g. earthquakes, tropical cyclones, floods, etc) and the 
vulnerability of people and economic activities to hazards. Many of the root causes of 
vulnerability to natural hazards can be found in aspects of poverty. In that connection, a major 
challenge for reducing the risk of disasters is to mainstream risk reduction into development 
strategies in an effective manner. That is the core element of the Hyogo Framework for Action 
(HFA), a plan adopted by 168 Governments to pursuit the reduction of our collective 
vulnerability to natural hazards.  
 
One of the five HFA priorities for action is to identify, assess and monitor disaster risks and 
enhance early warning. For which one of the key activities is to: 

 
“Develop systems of indicators of disaster risk and vulnerability at national and sub-
national scales that will enable decision-makers to assess the impact of disasters on 
social, economic and environmental conditions and disseminate the results to decision-
makers, the public and the populations at risk.” (United Nations, 2005)  

 
Some international initiatives have resulted in the development of global risk indexes for 
measuring disaster risk and risk management performance. The Disaster Risk Index (DRI) of the 
United Nations Development Programme (UNDP), in partnership with UNEP-GRID, models the 
factors influencing levels of human losses from disasters caused by natural hazards for the period 
1980-2000. It ranks countries according to the level of risk based on a multi-hazard risk index 
that was constructed by adding the estimated number of deaths by disasters from different hazard 
types obtained from the model (Peduzzi et al, 2009).  The Hotspot project implemented by 
Columbia University and the World Bank under the ProVention Consortium aimed at identify 
places were the risk of disaster-related mortality and economic losses are highest. It assessed the 
risk of mortality and economic losses on a 5x5 km grid (Dilley, 2006). The Americas Indexing 
Programme of the Instituto de Estudios Ambientales of the Universidad Nacional de Colombia in 
partnership with the InterAmerican Development Bank produced a set of composite indexes that 
represent different aspects of disaster risk or disaster risk management (Cardona, 2006). 
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A useful categorization of risk of impact of disasters is the distinction between intensive and 
extensive risk (United Nations, 2009). Intensive risks are associated with major concentrations of 
vulnerable population and economic assets exposed to extreme hazards and facing high risk, 
while extensive risks are associated with geographically dispersed exposure of vulnerable people 
and economic assets to low or moderate intensity hazards and facing low risk of impact of 
disasters. Such categorization can be used in identifying geographic areas that are subject to 
higher levels of impact of disaster. The distinction between these two categories based on 
empirical data, however, has proved to be very difficult. While information on impact caused by 
disasters, in terms of causalities and economic damage and loss, provide information regarding 
the realized risk, it does not provide information regarding the actual level of risk. For example, 
before the catastrophic destruction caused by the cyclone Nargis in Myanmar in 2008, analysis of 
damage and loss caused by past disasters would not provide any indication of such high intensity 
of risk to the impact of cyclones in the country. 
 
Statistical analysis of sample of disaster data has been used to estimate the threshold between 
intensive and extensive risks. One of such methodologies has suggested that disasters that 
resulted on more than 50 deaths or 500 houses destroyed are manifestations of intensive risk; 
disasters which impact is below these thresholds are, thus, manifestations of extensive risk 
(United Nations, 2009).  
 
Using a probabilistic definition of risk, this study presents a methodology that utilizes the concept 
of Value at Risk (VaR) - a risk measure widely used in financial mathematics and financial risk 
management - to estimate the threshold between intensive and extensive risk. The application of 
the methodology to a dataset of covering a large range of impact of disasters suggests that the 
thresholds in terms of deaths and houses destroyed should be about of half of the threshold 
mentioned above - 17 deaths and 281 houses destroyed.  Analysis of the risk of impact covering 
the period from 1970 to 2009 and four 10-year periods covering the 70s, 80s, 90s and the last 
decade suggested that the threshold for the number of deaths has not changed much over the 
years but the threshold considering houses destroyed has decreased significantly. That may 
indicate improvements in the disasters risk prevention and mitigation. 
 
This paper proposes the use of VaR as measure of risk instead of the well-known annual expected 
value of loss (e.g. average killed/year) because, as detailed in the following section, the expected 
value of loss can jump back and forth depending on the number of events with high impact 
during the period considered. 
 
This paper is divided in four sections. Section 2 presents the definition of concepts and presents 
the measure of risk used in the study. Section 3 presents the data sources and the transformations 
used in the analysis. Section 4 presents the methodology. Section 5 presents the results and 
Section 6 lists conclusions. 
 

2. Measuring risk 
 
This study adopts the definition of risk proposed by Cardona (2003): 
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"Risk: the expected number of lives lost, persons injured, damage to property and 
disruption of economic activity due to a particular natural phenomenon, and consequently 
the product of specific risk and elements at risk…Thus, risk is the potential loss to the 
exposed subject or system, resulting from the `convolution' of hazard and vulnerability. In 
this sense, risk may be expressed in mathematical form as the probability of surpassing a 
determined level of economic, social or environmental consequences at a certain place 
and during a certain period of time". 

 
Figure 1 illustrates this concept. It shows the risk as an exceedance probability curve of deaths 
caused by geological hazards in 20 countries/regions for with data is available in the Desinventar 
database (hereinafter called Desinventar) covering the period of 1988 to 2007.2 The horizontal 
axis presents levels of impact per day, measured as the absolute number of deaths, as the result of 
disasters caused by geological hazards (e.g. earthquakes, eruption). For each empirical value in 
the x axis we can find a correspondent value in the vertical axis that indicates the probability of 
that value being exceeded, thus the risk. The Figure shows that the higher the loss the lower the 
risk. However, although low, the risk of very high loss is not negligible.  
 

Figure 1. Risk of deaths caused by geological hazards, Desinventar - period 1988-2007 
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Source: Author’s calculations based on data on impact of disasters from Desinventar dataset. 

 
Given a probability distribution of risk such as the one presented in Figure 1, how to express the 
risk faced by a country or a region? One way would be to present the levels of loss that would be 
exceeded with certain probability during a certain period of time.  For example, one could 
                                                 
2 Countries/regions are: Argentina, Bolivia, Chile, Colombia, Costa Rica, Ecuador, Guatemala, Indonesia, Iran, 
Jordan, Mexico, Mozambique, Nepal, Orissa/India, Panama, Peru, Salvador, Sri Lanka, Venezuela, and Tamil 
Nadu/India. 
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measure the value of loss per day that has 5% of probability of being exceeded. A well-know 
measure of risk based on this idea is the Value-at-risk (VAR), which could be defined as the 
maximum loss during a certain period of time within a confidence interval.  
 
Mathematically, given some confidence level α in (0,1) the VaR at the confidence level α is given 
by the smallest number l such that the probability that the loss L exceeds l is not larger than (1 − 
α) (McNeil et al, 2005). 
 

}1)(:inf{ αα −≤>ℜ∈= lLPlVaR       (1) 
 
Given an empirical distribution function of loss, one can try to fit a theoretical probability 
distribution function and from that estimate the VaR for any confidence interval α in (0,1). 
Usually, one is interested in estimating the VaR with a high confidence interval, 95% or more. 
Invariable, that would require the estimate of the exceedance probability at the fat tail of the 
density probability distribution.  
 
 

Figure 2. Probability distribution of deaths caused by geological hazards, Desinventar - period 1988-2007 
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Source: Author’s calculations based on data on impact of disasters from Desinventar dataset. 

 
Figure 2 illustrates the fat tail in the case of loss owing to disasters. It shows, for the period from 
1988 to 2007, the probability distribution of deaths caused by geological hazards reported in 
Desinventar. The number in the horizontal axis at the far right side of the graphic represents the 
highest loss suffered during that period. When the distribution has the characteristic of a fat tail, 
the expected size of an event larger than any event yet seen is much larger than the largest event 
experienced to date (Kousky, C, Cooke, R, 2010).   
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One way to observe the fat tail is using mean excess plots. If variable X has cumulative 
distribution function F then the mean excess curve for X is defined as (Kousky, C, Cooke, R, 
2009):  
 

)|()( 00 xXxXExG >−=      (2) 
 
For a finite ordered sample, x1 < x2 , …< xn the sample mean excess plot gives the values: 
 

∑ −= + −−=
1,... 1 )/()()()};(,{

nij ijiii inxxxgxgx     for i=1,…n-1  ; g(xn)=0  (3) 

 
Figure 3 presents the mean excess plot of deaths caused by geological hazards based on 
Desinventar data. The positive slopes of these curves indicate that the next extreme event could 
be much worst than the last one.  
 
 

Figure 3. Mean excess plots deaths caused by geological hazards, Desinventar - period 1988-2007 
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Source: Author’s calculations based on data on impact of disasters from Desinventar dataset. 

 
The fat tail behavior can be described by a power-law distribution.  A damage variable X follows 
a power-law distribution if, above a certain lower bound xmin the probability that X exceeds x is 
given by 
 
  P(X > x) = k x –α ,  k, α>0, and  x>xmin      (4) 
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Where α is a constant parameter of the distribution known as the exponent or scaling parameter.  
An important characteristic of the power-law is that if α ≤ 1, the mean or first moment is infinite. 
Of course, on N samples from such distribution, the average of the N sample is finite, but it 
increases with N. If  1< α ≤ 2, the variance is infinite. The sample mean also has infinite variance 
no matter how many samples we draw. 
 
Therefore, if the probability distribution of loss owing to a disaster follows a power-law, the 
average loss (in terms of number of deaths or economic damage and loss) caused by disasters in a 
given period can not be used as a reliable measure of risk, since the average loss can jump back 
and forth depending of the period considered.  
 
Figure 4 illustrates this result. Again, using disaster data from Desinventar related to Geological 
hazards, it shows the number of people killed in from January 1988 to December 2007. If we 
calculate the average deaths per month in this period we will find it equal to 39 deaths per day. 
On the other hand, if we were making the same calculation before December 2004, the result 
would be 3 times lower – 13 deaths per day.  
 

Figure 4. Number of deaths caused by geological hazards, Desinventar (1988-2007) 
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Source: Author’s calculations based on data on impact of disasters from Desinventar dataset. 

 
One may argue that the solution would be to collect more historical data – considering a 100 year 
period would improve the estimation of the mean, as the argument goes. The problem is that, 
since the distribution of loss is fat tailed and the analysis indicate that it follows a power-law 
distribution with scaling parameter with a value lower than 2, when the sample size increases, the 
average square deviation from the true average keeps growing. In other words, we can collect 100 
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year data but the next large extreme event may be even larger than the last one and it may just 
happen next year, or tomorrow.  
 
Another argument against the use of more data to estimate the risk is that the process that 
generate the risk most likely changes with time – owing to socio-economic development, changes 
in demographics, etc… Therefore, the underlining process that generated the risk 100 years ago is 
not the same as the one that generated the risk 50 years ago, or 20 years ago.  
 
The VaR could still be used a measure of risk even if the distribution follows a power-law 
behaviour, by measuring VaR at a confidence interval α such as that the expected maximum loss 
falls below the xmin threshold. How the concept of VaR can be used to estimate the threshold 
between intensive and extensive risk? The idea is that such threshold is in fact the maximum loss 
in a country or region during a certain period of time if no extreme events occur (i.e. severe, 
infrequent hazard events such as major earthquakes, volcanic eruptions and tsunamis as well as 
severe, cyclical droughts, floods and cyclones). Such threshold, therefore, can be calculated as 
the VaR in the case that the distribution of risk of impact of disaster follows a power law. The 
following sections present the source of data and methodology used in the analysis.  
 

3. Data 
 
The source of the data is the DesInventar database accessed on 2 November 2010. It was used the 
data related to the following countries/regions: Argentina, Bolivia, Chile, Colombia, Costa Rica, 
Ecuador, Guatemala, Indonesia, Iran, Jordan, Mexico, Mozambique, Nepal, Orissa/India, 
Panama, Peru, Salvador, Sri Lanka, Venezuela, and Tamil Nadu/India. The information used was 
date of the disaster, the type of event (i.e. geological or hydro-met) and the number of deaths and 
houses destroyed. 
 
The analysis has used the whole DesInventar dataset (1970-2009) and  subsets covering the 
period from January 1988 to December 2007, in which data from all countries were available, 
and four 10-years period covering each decade from 1970 to 2009. The data was aggregated by 
day and the analysis of the smaller dataset was conducted considering the different types of event 
separately and combined. 
 
The summary statistics of the data used in the analysis for the period 1988-2007 is: 
 
a) Geological  
Variable   |       Obs        Mean    Std. Dev.       Min        Max 
deaths   |      3154    91.83164    1898.751          0      77804 
houses destroyed  |      3154    376.7676    3103.863          0      96576 
 

b) Hydro-met 
Variable   |       Obs        Mean    Std. Dev.       Min        Max 
deaths   |    110021    .6692086    24.31822          0       5880 
houses destroyed |    110021    26.54638    940.8488          0     228800 
         

c) Geological & Hydro-met 
Variable    |       Obs        Mean    Std. Dev.       Min        Max 
deaths   |    113175    3.209755    318.1848          0      77804 
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houses destroyed |    113175    36.30646    1064.072          0     228800 

 
 

4. Methodology 
 
The methodology used to assess the risk of impact of disasters followed to great extend the 
methodology adopted by Push (2004) and World Bank, ISDR and CAREC (2009). That 
methodology has five steps: 

1) Assemble the disaster’s impact data by categories; 
2) Sort the data in descending order; 
3) Determine by non-parametric methods the probability of each event; 
4) Fit a probability curve to determine the probability density curve; and 
5) Determine the annual damage by integrating under the curve. 

 
The difference between the methodology used in this study and the one used by Push (2004) and 
World Bank, ISDR and CAREC (2009) is the following: 
- It tests if a power-law distribution fits the empirical distribution. The idea is to refrain to 
estimate the exceedance probability of impacts in the part of the probability exceedance function 
that may follow a power-law. 
- It uses of maximum likelihood method for fitting the theoretical probability function instead of 
regression. The cumulative distribution function must take the maximum value of 1. Ordinary 
linear regression, however, does not incorporate such constraints and hence, in general, the 
regression line does not respect them.  
- It uses of a goodness-of- fit tests such as Kolmogorov-Smirnov (KS) statistic or Bayesian 
information criterion (BIC) to select the best-fit  distribution instead of averaging the estimates 
obtained by different distributions using weights based on the R2 of the regression analysis. 
- It estimates the confidence interval of the measure of risk.  
   
The methodology adopted in this study has seven steps: 

1) Assemble the disaster’s impact data by categories; 
2) Try to identify the power-law behavior by estimating the scaling parameter (alpha) and 

the lower bound (xmin); 
3) Test the goodness of fit of the power-law (Pareto distribution) when compared with other 

candidate distributions for x ≥ xmin; 
4) Estimate the confidence level of the VaR calculated for 0 ≤ x < xmin; 
5) Find the distribution that better fit the data for 0 ≤  x < xmin; 
6) Calculate the VaR using the distribution that better fit the data for 0 ≤ x < xmin; and 
7) Estimate the upper and lower confidence limits of the estimated VaR with 90% 

confidence. 
 
Step 1. Assemble the disaster’s impact data by categories 
 
Data is assembled in absolute values of deaths or houses destroyed per disaster per day and per 
type of event (i.e. geological and hydro-met).  
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Step 2. Identify the power-law behavior  
 
Try to fit a power-law distribution by estimating the scaling parameter and the lower bound. 
 
If the value of  xmin is known, the scaling parameter α can be estimated by direct numerical 
maximization of the logarithm of the likelihood function: 
 

 ∑
=

−−−−=
n

i

i

x
xxnnL

1 min
min lnln)1ln( αα      (5) 

 
 
To estimate the value of xmin

 , this study uses the method proposed by Clauset et all (2009): to 
choose the value of xmin that makes the probability distributions of the empirical data and the 
best-fit power law model as similar as possible above xmin. The measure used to quantify how 
similar the distributions are is the Kolmogorov-Smirnov  or KS statistic, which is the maximum 
distance between the cumulative distribution functions of the data Fn(x) and the fitted model F(x): 
 
 D = max | Fn(x) – F(x) |   ,   x  ≥ xmin      (6) 
 
 
Step 3. Compare with competing distributions 
 
To verify if the best fit power-law provides a better fit for x  ≥  xmin than other distributions, the 
analysis uses the Schwarz information criterion, also known as Bayesian information criterion 
(BIC), as a measure of goodness of fit (Vose, 2010): 
 

BIC = k ln(n) – 2ln(Lmax)     (7) 
 
Where n is the number of observations, k is the number of parameters to be estimated, and  
Lmax is the maximized value of the log-Likelihood for the estimated model.    
 
Other candidate distributions considered in the analysis are: 
 
– Generalized extreme value 
– Lognormal  
– Log-logistic  
– Inverse Gamma (Pearson Type V) 
– Gumbel 
– Weibull 
– Inverse Gaussian 
 
The description of the cumulative distribution functions of these distributions is presented in 
Annex 1. The analysis uses the fitted distribution only to interpolate the data and do not use it to 
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extrapolate to extreme values that were not apparent during the relative short period of 
observation. 
 
Step 4. Estimate the confidence level of VaR 
 
The maximum confidence level considered in the analysis is 95% - meaning that we try to find 
the minimum value of loss (Value at Risk) in a period of 20 years such that the probability that of 
occurrence of loss higher than that VaR is less than 5%.  
If from the analysis of the previous step one can not discard the possibility that the distribution 
follows a power-law for x  ≥  xmin, the next step is to find the new confidence level. We use 
frequency analysis to estimate the frequency of non-exceedance of xmin as if it were drawn from 
the sample – calculated using the following frequency analysis method: 
  
 

1) Rank the total number of data (n) in descending order according to their value (x), the 
highest value first and the lowest value last, including xmin; 

2) Assign a serial number (i) to each value x(xi, r=1,2,3,…,7305), the highest value being x1 
and the lowest being xn; 

3) Divide the rank (ixmin) of xmin by the total number of observations plus 1 to obtain the 
frequency of non-exceedance: 

F( x≤ xmin) =1 – ( ixmin /(7305+1)  )     (8) 
 
 
Step 5. Fit a probability curve for 0 ≤  x < xmin 
 
Use maximum likelihood to try to fit seven candidate distributions and then use BIC to test for 
the better fit. The seven candidate distributions are the distributions listed under step 3. 
 
 
Step 6. Estimate VaR for 0 ≤  x < xmin 
 
To calculate the VaR, we calculate the minimum of xmin and the estimate of the minimum value 
of loss for which the cumulative distribution that better fit the data for 0 ≤  x < xmin  is equal to 
1. 
 
Step 7. Estimate the confidence limits 
 
To calculate the confidence limits of the confidence interval of the frequency distributions, the 
binomial distribution was used given that in case of the cumulative frequency (and the 
exceedance probability) there are only two possibilities - a certain reference value X is exceeded 
or it is not exceeded.  
 
The standard deviation was calculated from the formula: 
 
  Sd = √ (F * (1-F) / n       (9) 
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Where F is the cumulative probability and n is the number of observations, in this case n=60.  
 
To determine the confidence interval of F we make use of Students’ t-test (t). For a confidence 
level of 90% and n=7305, t= 1.671. 
 
The lower (L) and upper (U) confidence limits of F in an asymmetrical distribution can be 
approximated by using F and (1-F) as weight factors: 
 
  L = F – 2  F  t  Sd       (10) 
   
  U = F + 2  (1-F) t  Sd       (11) 
  
 
We use (9), (10) and (11) to calculate the lower and upper limit of the fitted distribution. The 
threshold between intensive and extensive risk is taken as the lower limit of the fitted 
distribution. 

5. Results 
 
The analysis resulted in estimates of the thresholds for identification of intensive and extensive 
risk of Geological and Hydro-meteorological disasters (Table 1). The threshold in terms of 
numbers of deaths for Geological disasters is 22 and for Hydro-meteorological disasters is 18 
causalities. On the other hand, the threshold in terms of houses destroyed is higher for Hydro-
meteorological disasters (286 houses destroyed) than for Geological disasters (251 houses 
destroyed). Applying the methodology to the entire dataset results in thresholds of 17 deaths and 
281 houses destroyed.  
 
Table 1. Thresholds of intensive/extensive events 
 Threshold 
Type of event Deaths Houses destroyed 
Geological  22 251 
Hydro-met 18 286 
Geological & Hydro-met 17  281 

Source: Author’s calculations based on data on impact of disasters from Desinventar dataset. 
 
 
Table 2 summarizes the loss reports by hazard type, by disaster impact and by risk manifestation 
in the period from 1988 to 2007 using the thresholds related to geological and hydro-met events 
combined – 17 deaths and 281 houses destroyed. The table shows that the majority of the loss 
reports in the dataset were the manifestation of extensive risk to hydro-meteorological disasters, 
totaling 108,561 reports or 95.9% of the total. These disasters, however, were not the responsible 
for the majority of the deaths or damage and economic loss. Geological disasters identified as the 
manifestation of intensive risk, although accounting for only 0.4% of the reported disasters, 
accounted for 79.6% of the total deaths in the period. Intensive-risk hydro-meteorological 
disasters, which accounted for 1.3% of the total disasters, were responsible for 60.2% of total 
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houses destroyed. These numbers confirms the pattern of higher impact of disasters that were the 
manifestation of intensive risk. 
 
Table 2. Extensive and intensive loss reports associated with weather-related and geological 
hazards (Desinventar data – 1988 to 2007) 
Risk type Hazard 

type 
Loss 

reports 
% Deaths % Houses 

destroyed 
% 

Extensive Hydro-
met 

108,561 95.9 31,587 8.7 445,283 10.8 

Extensive Geological 2,735 2.4 795 0.2 36,640 0.9 
Intensive Hydro-

met 
1,442 1.3 41,768 11.5 2,474,727 60.2 

Intensive Geological 417 0.4 288,808 79.6 1,151,685 28.0 
Total  113,155   362,958   4,108,335   

Source: Author’s calculations based on data on impact of disasters from Desinventar dataset. 
 
Figure 5 shows the distribution of mortality across the sample between 1988 and 2007. The 
horizontal axis is in logarithm scale to make possible to visualize the distribution of mortality 
associated with extensive risk, which maximum is 10,000 times lower than the maximum deaths 
associated with intensive risk events in the period considered. 
 
Figure 5. Distribution of mortality associated with extensive and intensive risk across dataset 
(1988-2007) 
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Source: Author’s calculations based on data on impact of disasters from Desinventar dataset. 
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 Additional analysis of the risk of impact was conducted using the entire Desinvetar dataset 
covering the period from 1970 to 2009 and four 10-year periods covering the 70s, 80s, 90s and 
the last decade. The result of this analysis, which is shown in the table 3, indicates that the 
threshold for the number of deaths has not changed much over the years – from 17 to 21 deaths 
depending of the period considered. The threshold considering houses destroyed, however, has 
decreased significantly from 474 in the 1970s to 94 in the 200s. That may indicate improvements 
in the disasters risk prevention and mitigation that have contributed to the reduction of the 
maximum damage and loss in disasters caused by more frequent and less intense hazards.  
 
Table 3. Thresholds of intensive/extensive events for different periods (Geological & Hydro-met) 
 Threshold 
Period Deaths Houses destroyed 
1970-2009 19 397 
1988-2007 17 281 
1970-1979 19 474 
1980-1989 19 393 
1990-1999 21 280 
2000-2009 18 94 

Source: Author’s calculations based on data on impact of disasters from Desinventar dataset. 
 

6. Conclusions  
 
This paper used the concept of Value at Risk to estimate the threshold between intensive and 
extensive risk. Such threshold can be used to identify the areas that have been at risk of extreme 
disaster events. The application of the methodology to Desinventar dataset, which covers 20 
countries/regions in the period of 1988 to 2007, suggests thresholds of 17 deaths and 281 houses 
destroyed – or about half of the value used as threshold in previous assessments.  Analysis of the 
risk of impact covering the period from 1970 to 2009 and four 10-year periods covering the 70s, 
80s, 90s and the last decade suggested that the threshold for the number of deaths has not 
changed much over the years but the threshold considering houses destroyed has decreased 
significantly. That may indicate improvements in the disasters risk prevention and mitigation. 
 
Assessment of trends in disaster’s impact risks should be taken with caution for many reasons. 
For example, the assessment is based on historical data that is not complete and it is not 
homogenous across the years. Future work using this methodology may consider the estimated 
risk as a function of hazard, exposure and vulnerability (or other combination of these factors 
since in some models of risk the vulnerability is modeled as exposure and capacity to cope) and 
based on the estimated level of risk, frequency/intensity of hazard, and exposure, try to estimate 
the vulnerability. Or one can, based on a model of risk that was constructed, using as dependent 
variable the estimates of risk from the empirical data, assess what would be the modeled risk. 
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Annex 1 – Probability Distribution Functions used in the analysis 
 
1) Generalized Extreme Value Distribution 
Parameters 
 k - continuous shape parameter 
σ - continuous scale parameter (σ>0) 
μ - continuous location parameter  
 
Domain 

( ) 01 >
−

+
σ
μxk      for k ≠ 0 

- ∞ ≤ x ≤ + ∞      for k = 0 
 
Cumulative Distribution Function 
F(x) =  exp( - ( 1+ k z) – 1/k )   k ≠ 0 
            exp(  - exp( -z))   k= 0 (same as Gumbel Maximum Extreme Value Type 1) 

where  
σ
μ−

≡
xz  

 
2) Log-Logistic Distribution (two parameter) 
Parameters 
 α - continuous shape parameter (α > 0) 
β- continuous scale parameter (β > 0) 
 
Domain 
0 ≤ x ≤ + ∞  
 
Cumulative Distribution Function 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+

−

=

αβ
x

xF 1
1

)(
 

 
3) Lognormal Distribution (two parameter) 
Parameters 
σ - continuous parameter (σ>0) 
μ - continuous parameter 
 
Domain 
0 < x < + ∞ 
 
Cumulative Distribution Function 

⎟
⎠
⎞

⎜
⎝
⎛ −

Φ=
σ

μx
xF

ln
)(  
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where Φ is the Laplace Integral.  
 
4) Pearson Type 5 Distribution (two parameter) 
Parameters 
α - continuous shape parameter (α > 0) 
β - continuous scale parameter (β > 0) 
 
Domain 
0 < x < + ∞ 
 
Cumulative Distribution Function 

)(
)(

1)( /

α
αβ

Γ
Γ

−= xxF  

where Γ is the Gamma Function. 
 
5) Weibull Distribution (two parameter) 
Parameters 
α - continuous shape parameter (α > 0) 
β - continuous scale parameter (β > 0) 
 
Domain 
0 ≤ x < + ∞ 
 
Cumulative Distribution Function 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−−=

αβ
x

xF exp1)(  

 
6) Inverse Gaussian Distribution (two parameter) 
Parameters 
λ - continuous parameter (λ > 0) 
μ - continuous parameter (μ >0) 
 
Domain 
0 < x < + ∞ 
 
Cumulative Distribution Function 

( )μλ
μ

λ
μ

λ /2exp11)( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−Φ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Φ=

x
x

x
x

xF  

 
where Φ is the Laplace Integral.  
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