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Abstract

How has the microcredit movement managed to push financial frontiers? In a con-
text in which borrowers vary in unobservable risk, Ghatak (1999, 2000) shows that
group-based, joint liability contracts price for risk more accurately than individual
contracts, provided that borrowers match homogeneously by risk-type. This more ac-
curate risk-pricing can attract safe borrowers and rouse an otherwise dormant credit
market. We extend the theory to include correlated risk, and show that borrowers
will anti-diversify risk within groups, in order to lower chances of facing liability for
group members. We directly test risk-matching and intra-group diversification of risk
using data on Thai microcredit borrowing groups. We propose a non-parametric uni-
variate methodology for assessing homogeneity of matching; structural multivariate
analysis is carried out using Fox’s (2008) matching maximum score estimator. We
find evidence of a) homogeneous sorting by risk and b) risk anti-diversification within
groups, though not along occupational lines. Thus there is evidence that group lending
improves risk-pricing in this context and is part of the explanation of the rise in finan-
cial intermediation among the poor. However, the anti-diversification results reveal a
potentially negative aspect of voluntary group formation and point to limitations of
microcredit groups as risk-sharing mechanisms.

1 Introduction

The seemingly unprecedented growth in intermediation and financial services among the

world’s poor associated with the “microcredit movement” has surprised many.1 Microcredit

has come to be viewed as an effective way to target capital toward productive, entrepreneurial

uses by those at the bottom of the world income distribution, and in short, as one of the

1Bellman (2006) reports that more than 100 million customers worldwide are borrowing small loans from
around 10,000 microfinance institutions. According to the 2006 Nobel Peace Prize Press Release, “Loans to
poor people without any financial security had appeared to be an impossible idea”.
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most promising recent advances in economic development.2

Despite its advances, questions about microcredit remain. An obvious one – does it

work? – seems still to have eluded a definitive answer.3 However, there seems to be a

strong prima facie case for positive impacts from microcredit: the apparently large number

of microcredit institutions lending to poor borrowers but achieving robust repayment rates,

financial sustainability, and repeat relationships suggests that gains from trade are being

realized.

This leads to a different question: how does microcredit work? How have lenders managed

to solve the repayment problem involved in lending to poor, collateral-less borrowers? The

current paper is focused on this question.

One candidate explanation is due to Ghatak (1999, 2000). The context is a standard ad-

verse selection environment (Stiglitz and Weiss, 1981) in which there is no collateral (limited

liability) and borrowers’ distributions of project returns have identical means but vary in

riskiness. In this environment, a lender that cannot observe risk offers all borrowers the same

terms; its inability to price for risk results in effectively lower rates for risky borrowers, who

fail more often, than for safe borrowers. Thus there is cross-subsidization of risky borrowers

by safe borrowers, and this may cause safe borrowers to exit the market.

Ghatak adds to this context a communal tightness – that is, that borrowers know each

other’s riskiness – and shows that group lending contracts can harness the borrowers’ infor-

mation to improve the lender’s ability to price for risk. (Group lending contracts, popularized

by the micro-credit movement, require borrowers to form official groups and to bear some

liability for the loans of fellow group members.) The idea is as follows. First, borrowers

voluntarily sort into groups that are homogeneous by risk. Second, given homogeneous

2The 2006 Nobel Peace Prize was awarded to Bangladesh’s Muhammad Yunus and the Grameen Bank
for pioneering the microcredit approach. Quoted on Armendariz and Morduch (2005), economist Timothy
Besley calls microfinance “one of the most significant innovations in development policy of the past twenty-
five years”. Armendariz and Morduch (2005), Ghatak and Guinnane (1999), and Morduch (1999) provide
introductions to the topic.

3Of course, there is probably no single answer. See Armendariz and Morduch (2005) for a discussion of
impact studies. Ahlin and Jiang (2008) explore the issue of long-run impact theoretically.
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matching, the lender can use joint liability contracts to screen or pool borrowers to increase

efficiency. Consider the pooling contract. Even though contract terms are the same for all

borrowers, there is effectively a built-in discount for safe borrowers: their partners are safer

due to homogeneous matching, and thus the joint liability clause is less costly for them in

expectation (conditional on success). This discount can draw into the market safe borrowers

who would have been excluded under standard, individual loans.

The pooling result is appealing in practical terms. It implies that even a very passive

or unsophisticated lender that offers a single, standardized group contract is giving implicit

discounts to safe borrowers, and hence more accurately pricing for risk than if it used in-

dividual contracts. This may help explain the popularity of group lending in microcredit –

lenders that use it may be invigorating an otherwise anemic market (even unwittingly) – as

well as the growth of credit markets among the poor.

The lynchpin in this theory is the homogeneous risk-matching of the borrowing groups,

which provides the effective discounts for safe borrowers. To our knowledge, however, match-

ing patterns of micro-credit groups have yet to be empirically tested.4 A main contribution

of the current paper is to test directly for homogeneous risk-matching among borrowing

groups in Thailand.

The paper also extends the theory on matching for credit to consider correlated risk,

asking whether groups will form so as to diversify or anti-diversify group risk. The main

theoretical result is that groups sort homogeneously in both dimensions: they match with

similar risk-types, and among those, with partners exposed to the same risk. The intuition

is straightforward: groups anti-diversify in order to avoid facing liability for their partners.

This points to a potentially negative consequence of voluntary group formation, since anti-

diversification tends to limit the effectiveness of joint liability as a contracting tool.

We test empirically whether groups are homogeneous in both risk-type and risk-exposure.

4The literature seems to recognize this as an important open question. For example, it is the first one
on the microfinance mechanisms empirical research agenda Morduch (1999, p. 1586) lays out: “Is there
evidence of assortative matching through group lending as postulated by Ghatak (1999)?”
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The data come from the Townsend Thai dataset, which includes information on borrowing

groups from the Bank for Agriculture and Agricultural Cooperatives (BAAC). The BAAC

is the predominant rural lender in Thailand. It offers joint liability contracts to self-formed

groups of borrowers with little or no collateral.

To assess homogeneity of matching, we use a new approach. For each village and variable,

we calculate a variance decomposition, rank correlation, and/or chi-squared test statistic

to assess homogeneity of sorting. We then put these calculations in perspective with a

permutation test. That is, we first repeat the calculations for all possible groupings of the

village borrowers into groups of the observed sizes; the result from the observed grouping is

then mapped into a sorting percentile reflecting how homogeneous or heterogeneous group

formation is relative to all possibilities (holding group size and borrowing pool fixed).

For any given variable, villages can be found at both ends of the spectrum – homogeneous

sorting (high sorting percentile) and heterogeneous sorting (low sorting percentile). Sorting

percentile means and medians (across villages) suggest predominant tendencies. We show

that if matching is random with respect to the variable in question, then village sorting

percentiles are drawn from a uniform distribution. Thus we can statistically compare the

overall sorting patterns in the data to random matching by comparing the sample CDF of

village sorting percentiles to the uniform distribution CDF. We do so using the Kolmogorov-

Smirnov (KS) test.

We find direct evidence for risk-homogeneity within groups. That is, though far from

perfect homogeneity, the matching pattern can reject random matching in the direction of

homogeneity. We also find evidence for anti-diversification within groups. While random

matching based on agricultural occupation cannot be rejected, groups appear anti-diversified

in terms of clustering of bad income years and income shocks.

We turn next to a multivariate analysis using Fox’s (2008) matching maximum score

estimator and subsampling-based inference. This estimator chooses parameter values that

maximize the frequency with which observed groupings yield higher payoffs than feasible,
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unobserved groupings. In our implementation, the feasible, unobserved groupings are those

that result from swapping k borrowers across two groups in the same village. Results offer

some support for homogeneous matching along both risk-type and correlated risk dimensions.

In sum, Ghatak’s theory receives support from the data: the degree of risk-type ho-

mogeneity is significantly greater than random matching would predict. Apparently, group

lending is successfully embedding a non-negligible discount for safe borrowers via match-

ing behavior; this may partly explain how group lending and microcredit have successfully

awakened previously dormant credit markets. However, results on anti-diversification cau-

tion about a potentially negative aspect of voluntary group formation; they also suggest that

joint liability contracts can contain their own disincentives for using microcredit groups to

share risk.

It should be noted that we do not decisively establish causal determinants of group for-

mation. However, to assess whether group lending provides for better pricing for risk by tar-

geting discounts to safe borrowers, we argue that this is not necessary (section 4.3). Whether

risk-homogeneity results from purposeful matching or as an unintended consequence, it is by

itself sufficient for the improvement in risk-pricing that group lending is theorized to offer.

The paper is organized as follows. The model setup and theoretical sorting results are in

section 2. Data are described and key variables defined in section 3. Section 4 presents the

methodology behind the nonparametric univariate tests (section 4.1), as well as the results

(section 4.2) and a discussion of causality (section 4.3). Section 5 presents the multivariate

estimation. Section 6 concludes. Figures and proofs are in the appendix.

2 Theory

2.1 Baseline model and results

Risk-neutral agents are each endowed with no capital and one project. Each project requires

one unit of capital and has expected value Y . Agents and their projects differ in risk, indexed
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by p ∈ P, where P = [p, p] and 0 < p < p < 1. The project of an agent of type p yields

gross returns of Yp (“succeeds”) with probability p and yields gross returns of 0 (“fails”)

with probability 1 − p. This implies that p · Yp = Y , for all p ∈ P. The higher p, the lower

the agent’s risk.

Agents’ types are observable to other agents, but not to the outside lender. In this

context, uncollateralized individual loan contracts can be inefficient. They bear an interest

rate based on the average risk of a borrowing pool, a rate at which safe borrowers may find

it unprofitable to borrow.5 Thus, the lending market can (partially) collapse – even when

all projects are efficient – excluding all but the riskiest borrowers due to a failure to price

for risk.

In this context, group lending can increase efficiency by improving risk-pricing. Following

Ghatak (1999, 2000), a lender requires potential borrowers to form groups of size two, each

member of which is jointly liable for the other. Specifically, contracts are assumed to take the

following form. A borrower who fails pays the lender nothing, since loans are uncollateralized.

A borrower who succeeds pays the lender gross interest rate r > 0. A borrower who succeeds

and whose partner fails makes an additional liability payment q > 0. Thus, a borrower of

type pi who matches with a borrower of type pj has expected payoff

πij = Y − rpi − qpi(1 − pj), (1)

assuming the borrowers’ returns are uncorrelated. Note that

∂2(πij + πji)

∂pi∂pj
= 2q > 0. (2)

That is, risk-types are complements in the group payoff function and homogeneous matching

by risk is the stable outcome when there is a continuum of agents, as Ghatak has shown.

The intuition is that having a more reliable partner is worth more to safe borrowers, since a

5For evidence of this behavior in the Thai context, see Ahlin and Townsend (2007b).
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borrower is “on the hook” for his partner iff he succeeds.

In order to compare to a standard individual loan contract, where the payoff is Y − pir

and the interest rate does not vary by risk-type, one can rewrite the borrower’s payoff under

a group contract (equation 1) as

πij = Y − pir̃,

where

r̃ ≡ r + q(1 − pj).

Here r̃ is interpretable as the effective interest rate under group lending.6 It includes both

the direct interest rate r and expected bailout payment q(1 − pj).

Note that a borrower’s effective interest rate declines in his partner’s risk-type, pj . What

homogeneous matching gives is that one’s effective interest rate declines in one’s own risk-

type, pi. Safer borrowers have safer partners, and thus can expect fewer bailout payments

(conditional on success); in other words, safe borrowers face a lower effective interest rate

under joint liability, as they would under full information. In this sense, group lending

harnesses social information to vary the interest rate by risk-type and improve risk-pricing.

All this is true even under unsophisticated pooling contracts, where the lender simply

offers all comers a standard joint liability contract. Whether the lender knows it or not, if

matching is homogeneous, the contract embeds discounts for safe borrowers and can draw

more of them into the market. In this sense, unsophisticated group lending can be responsible

for reviving a lending market.

We next briefly discuss three variants on the basic model. First, assume a finite popu-

lation of borrowers rather than a continuum. Though homogeneous matching will generally

not be possible, it can be shown that groups will be rank-ordered by risk-type in equilib-

rium. That is, the two riskiest will pair together, the next two riskiest will pair together,

6Of course, the direct interest rates (r) need not be the same in group and individual contracts – even
holding borrowing pool fixed, r can be lower in a group contract because the bailout payments q also provide
the bank revenue.
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and so on. Given rank-ordered matching, group lending has qualitatively similar risk-pricing

advantages over individual lending. For example, the safest borrower is paired with the next

safest borrower, rather than with someone identical, and so receives a similar (if slightly

smaller) discount in effective interest rate.

Second, consider removing the assumption that borrowers know each other’s risk types, so

that random matching results instead of homogeneous matching. All borrowers would then

face the same expected effective interest rate based on matching with the average risk-type

in the borrowing pool.7 With no variation in ex ante effective interest rate across risk-type,

group lending would lose its risk-pricing advantage over individual lending in this context

and could not draw safe borrowers back into the market.8

Third, continue to assume borrower ignorance of each other’s risk, but assume they

match on characteristics other than risk – e.g. proximity or friendship – that are themselves

predictive of risk. Or, one could assume borrowers do know each others’ risk but face

custom-based or other constraints on matching. In either case, one might observe “relatively”

homogeneous risk-matching. Interestingly, group lending would then still tend to embed an

effective discount for safe borrowers, for the reasons discussed. If borrowers grasped their

payoffs, and to the extent that groups formed risk-homogeneously, then group lending could

still be a force for expanding the lending market.

In summary, within-group risk homogeneity could be expected in a number of settings.

Group lending could in each case improve risk-pricing and facilitate more efficient lending.

2.2 Heterogeneous matching over risk

Several authors have made the point that a different form of joint liability can reverse the

matching pattern. Specifically, Sadoulet (1999) and Guttman (2008)9 consider dynamic

contracts where liability for one’s partner carries the threat of being denied future loans. In

7See Ahlin and Townsend (2002, section 5.4.7) for more formal analysis.
8In a slightly different context, Armendariz and Gollier (2000) show how joint liability can raise efficiency

even with random matching.
9See also Chiappori and Reny (2006) for heterogeneous matching in a different context.
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the spirit of these models, we modify the previous section’s model by ignoring saving and

assuming that there are potentially two periods of loans. If the lender receives nothing from

the group in the first period, it denies both borrowers a second loan with probability d. Here,

d can be thought of as dynamic liability, while q represents direct liability.

A borrower of type pi matching with a borrower of type pj now has expected payoff

πij = [Y − rpi − qpi(1 − pj)] · [2 − d(1 − pi)(1 − pj)]. (3)

This is the same as in payoff equation 1 except for the additional bracketed term which

reflects the fact that there will be two loans unless both borrowers fail in the first period

(probability (1− pi)(1− pj)) and the lender responds by denying a second loan (probability

d). The cross-partial of the group payoff in this case is

∂2(πij + πji)

∂pi∂pj
= −2d[Y − (pi + pj − 1)r] + 4q + 2dq[(2pi − 1)(1− pj) + (2pj − 1)(1− pi)]. (4)

For any q > 0, if d is small enough the cross-partial is positive (close to 4q). Homogeneous

matching would result.

For any d > 0 and q small enough, however, the cross-partial is close to

−2d[Y − (pi + pj − 1)r],

which must be negative for any pair of agents that finds borrowing worthwhile. Thus, with

direct liability (q) negligible relative to dynamic liability (d), risk-types are substitutes. The

intuition here is that having a more reliable partner is worth more to risky borrowers, for

several reasons: they more often need their partner to be able to bail them out in order to

get a second loan, and they value a second loan more due to cross-subsidization from safe to

risky borrowers.
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With risk-types as substitutes, the matching would be heterogeneous.10 That is, the

safest borrower would match with the riskiest, the next safest with the next riskiest, and so

on onion-style.11

From a contracting perspective, it is not clear why dynamic liability would be used more

heavily than direct liability. Indeed, Sadoulet (1999) and Guttman (2008) take the contract

form as given and focus on matching. Regardless, the point here is simply that a dynamic

operationalization of joint liability in this context could lead to very different, heterogeneous

matching patterns.

A second well-known type of contract – a relative performance contract – could also

lead to heterogeneous matching when applied in this context. The basic joint liability con-

tract discussed in the previous section (payoff equation 1) can be interpreted as a relative

performance contract if q < 0, since then a borrower’s payment is lower when his partner

fails. With this contract, the cross-partial (equation 2) would be negative and heterogeneous

matching would result.

Again, the point is simply that some common contracting forms lead to heterogeneous

matching in this environment. If lenders for some reason have a misspecified model in mind

or operate under other constraints,12 these contract forms may be observed in practice even

if not strictly optimal.

2.3 Matching over degree and source of risk

This section points out a potential pitfall of relying on voluntary matching. We add to

the baseline model (with direct liability only) the possibility for correlated risk. Given the

agricultural setting of many micro-lenders, including the one in our data, this is a potentially

important modification. However, it is little analyzed in the group lending literature, and

10This is true of the first period. The final period would involve risk-type complementarity and the desire
to re-match homogeneously for continuing borrowers. The cited papers use an infinite horizon; we use a
two-period framework for simplicity.

11Heterogeneous matching is more complicated with n-person groups when n > 2; see Ahlin (2009).
12The lender in our data is a government development bank focused on agriculture and arguably operating

under significant political constraints.
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to our knowledge not at all in the context of group formation.

Given two borrowers i and j with unconditional probabilities of success pi and pj , respec-

tively, the joint output distribution can be written uniquely as:

j Succeeds (pj) j Fails (1 − pj)

i Succeeds (pi) pi pj + εij pi(1 − pj) − εij

i Fails (1 − pi) (1 − pi)pj − εij (1 − pi)(1 − pj) + εij

(5)

The case of εij ≡ 0 is the case of independent returns considered by Ghatak. A positive

(negative) εij gives positive (negative) correlation between borrower returns.

Correlation parameter εij may differ across pairs of borrowers. We proceed by placing

a simple structure on correlations which will ensure that εij = ε > 0 for any two borrowers

exposed to the same shock, and εij = 0 for all other pairings.

Assume there are two i.i.d. aggregate shocks, A and B. Each equals 1 or −1 with equal

probability. Every agent is assumed to be exposed to risk from either shock A or shock B,

or neither. Shock exposure-type is known by all agents but not the lender.

The probability of success of an “A-risk” agent of risk-type pi depends on the realization

of A in the following way: pi|A = pi + γA, for some γ > 0. That is, if there is a good shock

(A = 1), an A-risk agent’s success probability gets a boost, equal to γ; a bad shock (A = −1)

lowers the agent’s success probability by γ. The project of an A-risk agent is independent

of shock B: pi|B = pi. The success of a “B-risk” agent of type pi depends on the realization

of shock B but not shock A in the exactly analogous way: pi|B = pi + γB, pi|A = pi. The

remaining “N -risk” agents are exposed to neither aggregate shock: pi|A = pi|B = pi.

With these assumptions, the εij of equation 5 varies across borrowers i and j in a straight-

forward way. If borrowers i and j are exposed to the same shock, i.e. are both A-risk or
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both B-risk, one can show that13

εij = ε ≡ γ2. (6)

For similarly exposed borrowers, returns are positively correlated because probabilities of

success are pushed in the same direction by the shock. On the other hand, if borrowers i

and j are not exposed to the same shock, εij = 0. This is because the shocks each borrower

is exposed to – idiosyncratic and perhaps also aggregate – are independent.14

In summary, the correlation structure boils down to εij = ε (εij = 0) for pairs exposed

(not exposed) to the same shock. Let s ∈ S ≡ {A, B, N} denote borrower exposure-type.

For two borrowers i and j, let κi,j equal 1 if si = sj = A or si = sj = B, and 0 otherwise.

Then the payoff of borrower i when matched with borrower j is now

πij = Y − rpi − q[pi(1 − pj) − εκi,j ] = Y − rpi − qpi(1 − pj) + qεκi,j . (7)

The last term (qε) represents a payoff boost from matching with a partner exposed to the

same risk. This is because positive correlation of returns in the group lowers chances of

having to bail out one’s partner.

In this context, the following can be shown:

Proposition 1. Assume a continuum of borrowers. In equilibrium, almost every group is

homogeneous in both unconditional risk (p ∈ [p, p]) and risk exposure (s ∈ {A, B, N}).

Thus, groups match homogeneously in risk-type and exposure-type; they contain either

all A-risk, all B-risk, or all N -risk borrowers. The intuition for exposure-type homogeneity is

simple: borrowers choose to anti-diversify their groups so as to lower their chances of facing

liability for their partners.

13With probability 1/2, the shock to which both are exposed is good and the probability of both succeeding
is (pi + γ)(pj + γ); similarly, with probability 1/2 the probability of both succeeding is (pi − γ)(pj − γ). The
unconditional probability of both succeeding is thus pipj + γ2.

14Greater scope for diversification would be present if shocks A and B were negatively correlated, which
could easily be incorporated without changing results.

12



This result holds when there are many borrowers (a continuum). In a finite population,

unidimensionally-optimal matching along both dimensions simultaneously may not be feasi-

ble. For example, the grouping that is rank-ordered by risk-type may involve sub-maximal

anti-diversification. In this case, tradeoffs between the two dimensions of matching are in-

evitable. It seems clear, though, that matching will tend toward uniformity along both

dimensions, especially the dimension that has greater payoff salience.

Homogeneous borrower sorting along the correlated risk dimension appears to work

against efficient lending. In a finite population, it may divert borrowers from rank-ordering

by risk-type, which is the basis for group lending’s efficiency gains in this context. More

importantly, correlated risk lowers the effective rate of joint liability. In the extreme case

of perfect correlation, for example, the effective rate of joint liability is 0 regardless of how

the bank sets q, since when one borrower fails, they both do. In general, the greater the

correlation, the more irrelevant and blunted is any joint liability stipulation. This takes away

from the lender a potentially valuable tool that can be used to increase lending efficiency.15

Thus, some dimensions of voluntary matching may not work in favor of efficiency.

Though joint liability groups are sometimes thought of as risk-sharing groups, the result of

Proposition 1 casts them in a different light. In particular, joint liability contracts can reward

anti-diversification, and thus limit the usefulness of the group for risk-sharing. However, it

need not imply that group lending is bad for risk-sharing: households may share risk with

other households regardless of whether they are in the same borrowing group.

On the other hand, if joint liability is primarily the dynamic liability of section 2.2, the

contract would reward formation of diversified groups; diversification would raise chances

of partner bailouts that can extend the borrowing relationship. In this sense, risk-type and

exposure-type heterogeneity would be consistent with predominantly dynamic liability, while

homogeneity in both dimensions is consistent with predominantly direct liability.

15The lender could in principle use a higher q to neutralize higher correlated risk. However, this is not
possible since, as Gangopadhyay et al. (2005) argue, q is bounded above by r and is optimally set at its
upper bound when risk is uncorrelated.
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3 Data and Variable Descriptions

The empirical goal of the paper is to assess sorting patterns of borrowing groups related to

amount and type of risk. To do so, groups drawn from the same pool of borrowers will be

compared.

3.1 Data description and environment

The data come from the Townsend Thai survey data. In May 1997, a cross section of l92

villages was surveyed, covering four provinces from two contrasting regions of Thailand,

both with large agricultural sectors. In each village as many borrowing groups of the Bank

for Agriculture and Agricultural Cooperatives (BAAC) as possible were interviewed, up to

two. This baseline survey contains data on 262 groups, 200 of which are one of two groups

representing their village. Unfortunately for the purposes of this study, the borrower-level

data provided in this survey are minimal and are all provided by the group’s official leader,

not the individual borrowers.16

Hence, we turn to a resurvey, conducted in April and May 2000. The resurvey data were

collected from a random subset of the same villages, stratified at the sub-district (tambon)

level. Included are data on 87 groups, 14 of which are the only groups in their village, 70

of which are one of two groups interviewed from the same village, and 3 of which are one of

three groups interviewed from the same village. Relative to the baseline survey, the resurvey

data have two decisive advantages. First, individual group members respond to questions on

their own behalf, up to five per group and on average 4.5. Second, several resurvey questions

were designed to measure income risk and correlatedness, the key variables in the theory.

The BAAC is a government-operated development bank in Thailand. It was established

in l966 and is the primary formal financial institution serving rural households. It has esti-

mated that it serves 4.88 million farm families, in a country with between sixty and seventy

16The main concern is that when data on all borrowers in a group are provided by one person, the responses
can exaggerate within-group homogeneity. Unreported results from this dataset validate this concern.
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million inhabitants, about eighty percent of which live in rural areas. In the Townsend Thai

baseline household survey covering the same villages, BAAC loans constitute 34.3% of the

total number of loans, as compared with 3.4% for commercial banks, 12.8% for village-level

financial institutions, and 39.4% for informal loans and reciprocal gifts (see Kaboski and

Townsend, 1998).

The BAAC allows smaller loans17 to be backed only with social collateral in the form

of joint liability. This kind of borrowing is widespread: of the nearly 3000 households in

the baseline household survey, just over 20% had a group-guaranteed loan from the BAAC

outstanding in the previous year. To borrow in this way, a borrower must belong to an official

BAAC borrowing group and choose the group-guarantee option on the loan application. The

group then faces explicit liability for the loan; that is, in the event of a group member’s

default on a loan, the BAAC may opt to follow up with the delinquent borrower or other

group members in search of repayment. Contract terms leave the BAAC leeway, and there

are examples not only of this kind of direct liability, but also of dynamic liability: some group

members report delays or greater difficulties in getting future loans when a group member

is in default. What is not clear is which kind of liability dominates in practice, if either.

Groups typically have between five and fifteen members; about 15% are larger. Group

formation is primarily at the discretion of the borrowers themselves. Typically, groups are

born when borrowers propose a list of members to the BAAC, and the BAAC then approves

some or all members. The BAAC seems to use its veto power sparingly: only about 12%

of groups in the baseline survey report that the BAAC struck members from the list.18 We

know of no case where the BAAC adds members to a list or forms a group unilaterally. Thus,

while the BAAC has some say about group formation, it is in large part left to the borrowers

themselves.

17The cap on group loans at the time of the baseline survey was 50,000 Thai baht, about $2000. The
median group loan was closer to $1000.

18This is in response to a free-form question about how original members were determined when the group
was founded.
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3.2 Variable descriptions

The empirical strategy involves comparing across groups within villages to determine whether

homogeneity is greater within groups than across groups. To do so, measures of risk and of

correlatedness are necessary. Our main measure of risk takes the theory (section 2.1) quite

literally.19 Group members were asked what their income would be in the coming year if it

were a good year (Hi), what their income would be if it were a bad year (Lo), and what they

expected their income to be (Ex). Assuming that income can take only one of two values,

Hi and Lo, and that Ex represents the mean, the probability of success, prob or prob-high,

works out to be

prob =
Ex − Lo

Hi − Lo
,

using the fact that prob ∗ Hi + (1 − prob) ∗ Lo = Ex. Another measure of risk, less directly

related to the model, is the coefficient of variation of income.20 Based on the same

projected income distribution, this works out to be

σ/Ex =
√

Hi/Ex − 1
√

1 − Lo/Ex.

This is simply the geometric average of the percentage deviations from the mean for good

and bad years.

Correlatedness is proxied in three ways. First, we use information on occupation, and

more specifically, fraction of revenue coming from various agricultural occupations. Each

borrower reports the amount of revenue received in more than thirty categories. Ten of the

categories are agriculture-related – “rice farming”, “corn farming”, “raising shrimp”, “raising

chicken or ducks”, etc. Our measure of occupation is a vector with ten entries, each giving

the fraction of total household revenue accounted for by one agricultural category.21

19Ahlin and Townsend (2007b) find direct evidence for adverse selection in this credit market using this
measure.

20The coefficient of variation equals the standard deviation normalized by the mean.
21The vector sums to one, except when the household has revenue in non-agricultural categories, as is

often the case.
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This measure is motivated by the setup of section 2.3, which features household ex-

posure to various shocks. We choose to generalize from that section’s binary measure of

occupation/risk-exposure because some degree of within-household occupational heterogene-

ity is common in our data.22 We also choose to focus specifically on agricultural revenue

components because they arguably entail more exposure to common shocks than the other

revenue categories (prevalent among which are wage labor, small business categories, invest-

ment income, and remittances). Further, the BAAC explicitly targets farmers and lends to

promote agricultural investment.

Second, we use timing of bad income years, worst year. Specifically, borrowers are asked

which year of the past two was worse for household income: “one year ago”, “two years ago”,

or “neither”. If borrowers are exposed to the same aggregate shocks, bad income years are

more likely to coincide; thus coincidence of bad years can proxy anti-diversification.

Third, we calculate a direct measure of a household income shock. Under certain as-

sumptions, it captures the percent deviation of this year’s income from its expected value.

The household’s current income, Inc, comes from a detailed compilation of realized business

and farm revenues and expenses, along with wage and other income sources, for the just-

completed year. The expected value of its current income is proxied by next year’s expected

income, Ex, mentioned above. The income shock is then Shock = (Inc − Ex)/Ex. This

measure cleanly captures the income shock if each household’s income is i.i.d. over time.

Then Ex is exactly mean income, and Shock is this year’s realized random component of

income (as a percent of mean income). If each household’s income exhibits i.i.d. fluctuations

around a growth path, where the growth rate is common across households, the measure

captures the income shock up to a constant. However, if household incomes are growing at

different rates, then Shock captures not only the income shock but differential growth rates

of income.

22Occupational similarity between two borrowers is then the dot product of their respective vectors. The
dot product would give the κi,j of section 2.3 if we had only two categories and all vector entries had to
be binary. With more than two categories and fractional occupations, it is straightforward to show that the
dot product is the correct generalization of the theory in section 2.3.
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4 Univariate Methodology and Results

In this section, we assess homogeneity/heterogeneity of sorting in one dimension at a time.

Section 5 extends the analysis to consider multi-dimensional sorting.

4.1 Univariate Methodology

Section 4.1.1 proposes a way to combine permutation testing with standard measures to

assess homogeneity of sorting in a given village. Section 4.1.2 discusses how to use these

village-level measures in a nonparametric statistical test across all villages of whether group-

ings tend to be homogeneous or heterogeneous. Section 4.1.3 proposes alternative, model-

driven metrics of sorting that can be used as the basis for these nonparametric tests for

homogeneous/heterogeneous sorting.

4.1.1 Quantifying Sorting

Consider data on variable X from two groups in village v, L and M , of respective sample

sizes l and m: L = (x1, ..., xl) and M = (xl+1, ..., xl+m). In this section, we propose ways of

measuring how homogeneously sorted these groups are.

First, assume X is an ordered variable, e.g. risk-type. One way to measure within-group

homogeneity is to calculate a variance decomposition of X = (x1, ..., xl+m) into between-group

and within-group components. The between-group variance is maximized in a rank-ordered

grouping, so a larger between-group component can be taken as evidence of homogeneous

sorting. To illustrate, consider a village with 2 groups of size 4, with risk-types23 X =

(1, 2, 4, 5, 6, 7, 8, 9). Compare the following borrower grouping: L = (2, 5, 6, 8) and M =

(1, 4, 7, 9), with an alternative grouping: L′ = (1, 2, 5, 6) and M ′ = (4, 7, 8, 9). Of the overall

variance, 0% in the first grouping and 44% in the second grouping is attributed to between-

group differences. The higher value reflects the more homogeneous sorting of the second

grouping, and the lower value the more mixed first grouping.

23For brevity, all risk-types are multiplied by 10; the true data are (0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9).
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An alternative sorting metric that uses only the data’s ordinality is a rank correlation.

In particular, one can calculate Kendall’s taub
24 between the data X and a group index

variable, Y , where for example y1 = ... = yl = 1 and yl+1 = ... = yl+m = 2. Using the

groupings of the previous example, Kendall’s taub between (2, 5, 6, 8, 1, 4, 7, 9) and group

index (1, 1, 1, 1, 2, 2, 2, 2) is 0%, and between (1, 2, 5, 6, 4, 7, 8, 9) and the same group index

is 57%.25 Again, the higher value reflects more homogeneous sorting, and the lower value

more mixing; Kendall’s taub is maximized under rank-ordering.

For categorical variables, e.g. occupation or worst year, neither of the preceding sorting

metrics can be used. An atheoretic approach for this case is to use the chi-squared indepen-

dence (or homogeneity) test statistic.26 This statistic quantifies deviations from the grouping

in which each group has the same proportion of responses in each category as the village pop-

ulation. For example, letting A and B be two occupations (shocks), compare the following

grouping: L = (A, A, B, B) and M = (A, A, B, B), with an alternative: L′ = (A, A, A, B)

and M ′ = (A, B, B, B). The chi-squared test statistic for the first grouping is 0 and for

the second grouping is 2.27 Again, the higher value reflects more homogeneous sorting; the

chi-squared statistic is maximized under group homogeneity.

We thus have three metrics for sorting, two for ordered variables (variance decomposition,

rank correlation) and one for categorical variables (chi-squared statistic). To move toward

a statistical test for homogeneous sorting, we use the same permutation test to scale each

metric.

Specifically, consider again observed data X = (x1, ..., xl+m) from two groups in village

v, L and M , of respective sizes l and m. We assume that the relevant matching universe for

group formation is the village – a reasonable assumption since villages are relatively small

24Results using Spearman’s rho end up nearly identical, so we do not report them. Formulas for Kendall’s
taub and Spearman’s rho can be found in Gibbons and Chakraborti (2003, pp. 419-20, 422-3).

25The correlations would be the same but negative if the group indices were reversed, i.e. if we used
group index vector (2, 2, 2, 2, 1, 1, 1, 1). Since group index is arbitrary, we take the absolute value of the rank
correlation (more generally, the maximum across all potential group indexings).

26The formula can be found in DeGroot (1986, pp. 536-7, 542-3).
27The formula generalizes in an obvious way to fractional occupations that may not sum to one.
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and geographically concentrated. Hence, we form all possible combinations of the l + m

borrowers into two groups of respective sizes l and m and perform the same calculation –

variance decomposition, rank correlation, and/or chi-squared statistic – on each one. The

observed village grouping can then be assigned a “sorting percentile” (or sorting percentile

range, given ties and a finite population) based on where its calculated value falls relative

to this universe of possibilities. In this way, the sorting score for each village is assigned a

value (or range) in [0, 1], with higher numbers representing greater homogeneity in sorting

and lower numbers representing more heterogeneous sorting. This permutation scaling is

applied for each variable and each metric.

To illustrate, consider again a village with 2 groups of size 4, with risk-types X =

(1, 2, 4, 5, 6, 7, 8, 9). There are
(
8
4

)
/2 = 35 groupings of these eight borrowers into two groups

of size four. Compared to the grouping L = (2, 5, 6, 8) and M = (1, 4, 7, 9), 32 groupings

register higher between-group variance while 3 (including the grouping itself) register exactly

the same, i.e. zero between-group variance. Thus this grouping is somewhere between the 0th

and 8.6th percentiles in terms of group homogeneity; its sorting percentile range is [0, 8.6].

The somewhat wide range reflects the ties and the relatively small number of groupings.

Compared to the grouping L′ = (1, 2, 5, 6) and M ′ = (4, 7, 8, 9), 31 groupings have lower, 2

have the same, and 2 have higher between-group variance. This grouping’s sorting percentile

range is thus [88.6, 94.3]. Similarly, applying this permutation test to the Kendall’s taub rank

correlation metric gives a slightly wider sorting percentile range to the first grouping, [0, 11.4],

and the same sorting percentile range to the second grouping, [88.6, 94.3].

The same approach can be used with the chi-squared test statistic.28 There are 17

combinations with a larger chi-squared test statistic and 18 combinations tied with grouping

L = (A, A, B, B) and M = (A, A, B, B). This grouping’s percentile range is then [0, 51.4].

Compared to grouping L′ = (A, A, A, B) and M ′ = (A, B, B, B), 18 combinations have less,

1 combination has greater, and 16 combinations have the same chi-squared test statistic.

28Using p-values based on the chi-squared distribution seems undesirable due to the small group sample
sizes.
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This grouping’s sorting percentile range is [51.4, 97.1].

Thus for a given variable and sorting metric, each village is assigned a sorting percentile

range. A higher sorting percentile range reflects more homogeneous sorting, according to the

metric used, while a lower sorting percentile reflects more heterogeneous sorting. One can

then interpret villages with percentiles above the 95th as exhibiting homogeneous sorting at

the 5% confidence level, for example.

4.1.2 A Nonparametric Test

Rather than test sorting village by village, however, we combine villages in a single test (per

variable and sorting metric) of the overall tendency to sort homogeneously. Each village’s

sorting percentile is treated as a draw from the same distribution, and this distribution is

compared using the Kolmogorov-Smirnov test to a benchmark distribution corresponding to

a null hypothesis. An advantage of this approach is that it is non-parametric and requires

no distributional assumptions.

Our null hypothesis is that matching is random with respect to the given variable. The

rationale is the same as the one underpinning the t-statistic in a linear regression, where the

null hypothesis is also that the variable has no explanatory power.

The distribution of sorting percentiles that reflects random matching is the uniform on

[0, 1]. The idea is as follows. Consider the case of a large number of borrowers in a village,

no two groupings of which result in a tie using the given sorting metric. If each of the N ,

say, possible groupings is equally likely, as is the case under random matching, then each

1/Nth sorting percentile is equally likely to be realized by a given village. That is, a village’s

sorting percentile is drawn from the uniform distribution – approximately, with the difference

getting arbitrarily small as N increases.

With smaller numbers of borrowers and, especially, with ties, villages are assigned non-

negligibly wide sorting percentile ranges, not sorting percentiles (see previous section). Con-

sider drawing a sorting percentile randomly from the village’s sorting percentile range via
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the uniform distribution. For example, if a village’s sorting percentile range is calculated

to be [88.6, 94.3], the sorting percentile would then be drawn randomly from the uniform

distribution on this interval.

To summarize, let a village’s sorting percentile range be calculated by the permutation

methods described in the previous section; and let its sorting percentile (point estimate) be

drawn at random from the uniform distribution on its sorting percentile range. Then the

exact distribution of a village’s sorting percentile under random matching, regardless of the

sorting metric, is the uniform on [0, 1].

Proposition 2. Under random matching, a village’s sorting percentile z is drawn from the

uniform distribution on [0, 1].

The procedure is then to construct a sample CDF from the observed village sorting per-

centiles, and compare it using the Kolmogorov-Smirnov (KS) test to the uniform distribution,

i.e. random matching. If the sample CDF stochastically dominates the uniform, this means

villages’ sorting percentiles tend to be higher than random matching would give rise to and

provides statistical evidence for homogeneous sorting. On the other hand, if the sample CDF

is stochastically dominated by the uniform, this means villages’ sorting percentiles tend to

be lower than what random matching would produce, suggesting heterogeneous matching.

We thus can report p-values for these KS one-sided tests of stochastic dominance. Note,

however, that one such p-value involves a number of random choices: the random draws that

pick villages’ sorting percentiles out of their sorting percentile ranges. Thus, even given the

data, the p-value is a random variable. So, we repeat the test 1 million times under 1 million

different sets of random draws, and report the average p-value across all draws.29

29Since each p-value can be interpreted as a probability, and since each p-value is an equally valid assess-
ment of this probability, taking the mean p-value across a large number of random draws appears to be a
reasonable approach.
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4.1.3 The test with structural sorting measures

The sorting metrics discussed so far – variance decomposition, rank correlation, and chi-

squared test statistic – have the advantage of being well-known and intuitive, but their

connection to the theory is not always clear.30 So, we turn next to alternative metrics

derived directly from the theory. The theory predicts that any grouping we observe must

maximize the sum of group payoffs; otherwise, the groups could re-organize with everyone

being made better off. This suggests that the group payoff function itself can serve as

the measure of sorting. Comparing the payoffs achieved in the observed grouping with the

payoffs from alternative, unobserved groupings will then give a sense of how well sorted the

grouping we observe is with respect to maximizing the payoff function of the theory (which,

we have seen, leads to homogeneous matching under direct liability).

Consider first the baseline model with uncorrelated risk and observed groups L = {i, j}
and M = {i′, j′} in a village. Let group payoff functions be ΠL and ΠM , where ΠL = πij +πji

and ΠM = πi′j′ + πj′i′ . Then we would like to use ΠL + ΠM as the measure of sorting, since

this is what must be maximized by the observed grouping in the theory. Using equation 1,

ΠL + ΠM = 4Y − (r + q)(pi + pj + pi′ + pj′) + q(pipj + pjpi + pi′pj′ + pj′pi′).

Note that only the interaction terms (the last parenthetical) may differ across groupings of

the 4 borrowers. Hence, given our ultimate purpose of comparing ΠL+ΠM against alternative

groupings of the same set of borrowers, we can ignore all but these terms.31 Letting p−k be

30What is clear is that they are maximized under a homogeneous/rank-ordered grouping. Less clear is
how they rank other groupings on the homogeneity/heterogeneity scale. This matters because when groups
have more than 2 members and types are substitutes, only a relatively small fraction of groupings can be
ruled out without knowledge of the exact payoff function and type distribution (see Ahlin, 2009). However,
while substitutability by itself may rule out few groupings, knowledge of the production function and the
types generally leaves only one optimal grouping.

31In other words, results using the entire group payoff function are the same for any Y , r, and q > 0.
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the risk-type of borrower k’s partner, they can be written

∑
k∈L

pkp−k +
∑
k∈M

pkp−k. (8)

Taking the theory to data is complicated, however, by the fact that the borrowing groups

in the data are not pairs, but typically involve 5-15 members. Further, we do not typically

have the entire group’s data, primarily because a maximum of five group members are

sampled. Our strategy will be to proxy for p−k in the above expression (8) using the average

risk-type of the other sampled group members.

Specifically, let group G be a set of grouped borrowers, SG be the sampled subset of group

G, and pSG

−k be the average risk-type in the sampled subset of group G excluding borrower

k. The following is our sample estimate of the above payoff expression 8:

∑
k∈SL

pkp
SL

−k +
∑

k∈SM

pkp
SM

−k . (9)

This estimate is simply the sum, over all sampled village borrowers, of the borrower’s risk-

type multiplied by the average risk-type of other, same-group sampled borrowers.32 To

illustrate, grouping L = (2, 5, 6, 8) and M = (1, 4, 7, 9) has sum of group payoffs of 202,33

compared to 235 for more homogeneously matched grouping with L′ = (1, 2, 5, 6) and M ′ =

(4, 7, 8, 9). Using the data we have, we can directly calculate this expression substituting our

empirical measure prob (see section 3) for the p’s.

Consider also the contract under correlated risk. Letting κk,−k be the dummy equaling 1

32This form of the payoff function can be justified by the n-person group contract suggested in Ghatak
(1999), in which each borrower who succeeds owes q per fellow unsuccessful borrower.

33This comes from 2 ∗ 19/3 + 5 ∗ 16/3 + ... + 7 ∗ 14/3 + 9 ∗ 12/3.
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if borrower k faces the same risk-exposure as his partner and using payoff function 7 gives

ΠL + ΠM =4Y − (r + q)(pi + pj + pi′ + pj′)

+ q

(∑
k∈L

pkp−k +
∑
k∈M

pkp−k

)
+ qε

(∑
k∈L

κk,−k +
∑
k∈M

κk,−k

)
.

(10)

There are two types of interaction terms in the groups’ payoff function, involving uncondi-

tional risk-type and risk exposure-type (the first and second parentheticals on the second

line, respectively). To test for (anti-)diversification using the univariate techniques of this

section, we ignore the unconditional risk-type interaction terms and focus on interactions

in risk exposure-type. Following the above techniques and defining κSG

k,−k as the average

correlatedness dummy of borrower k in group G with other sampled group G members, our

estimator for sum of group payoffs due to correlated risk is

∑
k∈SL

κSL

k,−k +
∑

k∈SM

κSM

k,−k.

This estimate is simply the sum, over all sampled village borrowers, of the fraction of other,

same-group sampled borrowers exposed to the same risk. Again, compare grouping L =

(A, A, B, B) and M = (A, A, B, B) with grouping L′ = (A, A, A, B) and M ′ = (A, B, B, B).

The correlation-related payoffs sum to 2.67 in the first grouping and to 4 in the second, more

anti-diversified (homogeneous) grouping.34

Using these model-based sorting metrics, the procedure is as before: use permutation

tests to calculate sorting percentile ranges for each village’s observed grouping, then use the

KS test to compare the sample CDFs of village sorting percentiles to the uniform distribution.

The remaining question in this approach is how to use our data to proxy for κi,j, the

correlatedness dummy. In the case of worst year (see section 3 for descriptions of these

measures), we proxy κi,j simply by 1{worst yearG
i = worst yearG

j }; that is, if the two

34In the first grouping, for example, 1/3 of each borrower’s fellow group members are exposed to the same
shock; summing 1/3 across 8 borrowers gives 2.67.
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borrowers (do not) name the same year as worst, we say they are (not) exposed to the same

risk. In the case of shock, a continuous variable, we proxy κi,j by e−|shockG
i −shockG

j |; that is,

our assessment of the probability two borrowers are exposed to the same risk is one if their

shocks exactly coincided and decreasing toward zero in the distance between their shocks.

In the case of occupation, a ten-entry vector with the fraction of total revenue coming from

each of ten agricultural areas, κi,j is measured as the dot product of the borrower’s vectors;

see section 3.2 for explanation.

4.2 Univariate Results

Sorting by risk-type. The probability of achieving high income, prob, is the focus of

our empirical tests for homogeneous risk-matching. The sample CDFs of village sorting

percentile ranges for prob based on Kendall’s taub and the structural sorting metric, respec-

tively, are graphed in Figure 1.35 Based on the rank correlation, the mean (median) village

is more homogeneously sorted than 58% (59%) of all possible combinations of borrowers into

groups of the observed sizes. The random-matching benchmark, the uniform, is graphed as

a dashed line. Using a one-sided KS test, we reject at the 5% level the hypothesis of hetero-

geneous sorting, that is, that the true distribution of village sorting percentiles is first-order

stochastically dominated by the uniform.36 These results point to risk-matching that, while

not rank-ordered, is statistically distinguishable from random matching in the direction of

homogeneity.

The results using the structural sorting metric, which uses the model’s specific payoff

function (see section 4.1.3), are quite similar to the atheoretic results. The mean (median)

sorting percentile is 56% (61%) and heterogeneous matching is rejected at the 5% level.

A second measure of risk is the coefficient of variation of projected income. This

35The reported p-values are averages over 1 million KS p-values based on random draws from each village’s
sorting percentile range. The sample CDFs graphed are essentially averages over an infinite number of sample
CDFs constructed based on these random draws; equivalently, they incorporate the sorting percentile range
of each village directly. Means and medians are computed using these sample CDFs.

36Results using the variance decomposition sorting metric are similar: mean (median) of 57% (62%), and
KS one-sided (+) p-value of 0.01.
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measure is a proxy and cannot be substituted directly into the structural sorting metric.

Hence, the sample CDFs of village sorting percentile ranges for the coefficient of variation

based on Kendall’s taub and variance decomposition are graphed in Figure 2. Here, the

variance decomposition gives strong evidence of homogeneous sorting: the mean (median)

village is more homogeneously sorted than 63% (72%) of all possible borrower groupings,

and heterogeneous sorting is rejected at the 5% level. However, when judged by the rank

correlation there is less evidence for homogeneous sorting by coefficient of variation. The

means and medians drop to 59% and 56%, respectively, and the KS tests come somewhat

close but fail to reject heterogeneous sorting at the 10% level. While the coefficient of

variation measure gives weaker results, we view it as auxiliary to the prob measure, and

somewhat supportive.

Overall, the data give solid evidence for a non-negligible degree of homogeneous risk-

matching, and are typically able to reject heterogeneous matching. From the standpoint of

the theories of section 2, this suggests that direct liability is a non-negligible aspect of the

group contracts, and that safe borrowers are receiving somewhat lower implicit borrowing

rates because they tend to have safer partners.

Sorting by exposure-type. We next examine diversification within groups. Consider

the worst year measure. Since this is a categorical variable, Figure 3 reports results using

the chi-squared test statistic and the structural sorting metric. Using the structural metric,

the average (median) village is more homogeneously sorted than 60% (65%) of villages; using

the chi-squared metric, the average (median) village is more homogeneously sorted than 59%

(62%) of villages. In both cases, heteregenous matching (diversification) is rejected by the

KS test at the 10% level.

Next, consider coincidence of income shocks, where the shock is measured by the (signed)

percent deviation of this year’s realized income from next year’s expected income. Results

using the rank correlation and the structural sorting metric are presented in Figure 4. The

rank correlation metric yields a mean (median) of 60% (68%) and rejects diversification at
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the 5% level.37 The structural metric produces a mean (median) of 54% (49%), and rejects

heterogeneous matching (diversification) at the 10% level.

We turn finally to occupational diversification, using the chi-squared and the structural

sorting metrics. Results are graphed in Figure 5. Interestingly, they suggest that matching is

not too different from random based on occupation, where occupation is measured by shares

of total revenue coming from ten different agricultural categories. The means and medians

are in the 40%’s, and the KS p-values are lower in the test against homogeneous matching

(anti-diversification); however, neither diversification nor anti-diversification can be rejected

at better than a 20% significance level.

With regard to correlated risk, the results for worst year and shock suggest that bor-

rowers have incomes that are somewhat anti-diversified along group lines; but the results

for occupation suggest that this anti-diversification does not take the form of (agricultural-

)occupational homogeneity. A potential interpretation is that the lender encourages (ob-

servable) diversification within groups, including by agricultural occupation, but that the

borrowers are able to achieve some anti-diversification by exploiting other, unobserved traits.

4.3 Discussion of Univariate Results

The univariate tests suggest that group composition is homogeneous along both risk-type

and exposure-type dimensions – far from perfectly, but moreso than under random matching.

Of course, the evidence is not proof of causality running from risk amount or exposure type

to sorting behavior. For example, it may be that friends or relatives group together, friends

or relatives that are alike in certain regards, including along risk dimensions. Or, perhaps

monitoring is easier within a group of similarly-occupied individuals, who by nature of their

occupation face similar amounts and types of risk (though the lack of observed occupational

homogeneity casts doubt on this particular story).

However, if the goal is to assess whether the Ghatak (1999) model is an empirically

37Results using the variance decomposition sorting metric are similar, if slightly weaker statistically: mean
57%, median 66%, KS one-sided (+) p-value 0.06.
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plausible (partial) explanation of group lending’s popularity and ability to revive credit

markets, these simple univariate results are in some ways preferable to alternatives. The

reason is that the safe-borrower discount embedded in lending to risk-homogeneous groups

exists regardless of how groups end up homogeneously sorted by risk. Borrowers may have

consciously considered the risk of their partners in forming groups, or they may have simply

formed groups with friends or relatives who happened to have similar risk characteristics;

either way, safe borrowers end up with safer partners. Given this homogeneous risk-matching,

then, the joint liability stipulation is less onerous for safe borrowers, meaning they get

an implicit discount in their borrowing rate. It is this discount, which prices risk more

accurately, that allows group lending to draw more borrowers into the market. The point is

that, in this framework, matching that is homogeneous by risk – by whatever mechanism –

is all that is needed for group lending to offer an improvement in contracting.

Thus, testing directly the degree of risk homogeneity is arguably the most appropriate

approach to testing the main idea of the Ghatak model. Conversely, rejecting Ghatak’s

main idea based on causally identifying, e.g., kinship and not risk-type as the key sorting

determinant would appear to be misguided, if the evidence pointed to risk-homogeneous

groups (as it does here). Similarly, rejecting homogeneous risk-sorting based on a zero

coefficient in a multivariate regression does not necessarily reject the main idea of the Ghatak

model if the coefficient is positive in a univariate regression.

A similar argument can be made about the extended model that incorporates correlated

risk. If there is unconditional evidence for anti-diversification of risk, then that is enough to

raise the concern that some of the contractually stipulated joint liability is being undone –

whether or not the anti-diversification is a conscious choice on the part of borrowers.

Of course, establishing causal links between risk and group formation would be ideal for

testing other aspects of the Ghatak model and extensions. It would also make the main

argument more robust if the risk-homogeneity is achieved purposefully rather than as an

unintended consequence. Still, as argued above, we believe the results presented are first-
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order informative about the ability and limitations of the theory to explain the rise of group

lending and micro-credit.

5 Multivariate Methodology and Results

The univariate results are consistent with both dimensions of risk – amount of risk and type

of exposure – being important for matching. One might wonder, though, if one dimension of

homogeneity is driving the other. Hence, we turn next to a multivariate approach that allows

both dimensions of risk simultaneously to affect payoffs and sorting behavior. In particular,

we use the matching maximum score estimator of Fox (2008).38 This estimator can be used

with an atheoretic or structural approach; here we take a structural approach and derive the

specification from the exact payoff function of the model.39

The estimator works by choosing parameters that most frequently give observed agent

groupings higher joint surplus (sum of payoffs) than feasible, unobserved agent groupings.

Thus the estimator derives moment inequality conditions from the idea that in an environ-

ment with no search frictions and transferable utility, like ours, observed groupings maximize

total surplus, relative to feasible alternatives.

Consider observed groups L and M in village v. Let L̃ and M̃ denote an alternative

arrangement of the borrowers from L and M into two groups of the original sizes. As in

section 4.1.1, we assume that borrowers can match with any others in their village; thus L̃

and M̃ represent a feasible, unobserved grouping. If ΠG(φ) gives the sum of payoffs of any

group G as a function of parameters φ, theory predicts

ΠL(φ) + ΠM(φ) ≥ ΠL̃(φ) + ΠM̃(φ). (11)

38Fafchamps and Gubert (2007) pioneer a different multivariate empirical approach to group formation
based on the dyadic regression.

39A reduced-form estimation that included more controls than we use could also be interesting. However,
this is not as attractive in part since our dataset lacks data on social networks.
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The matching maximum score estimator chooses parameters φ that maximize the score, i.e.

the number of inequalities of the form 11 that are true, where each inequality corresponds

to a different unobserved grouping L̃, M̃ .

Our set of unobserved groupings, and thus inequalities, comes from all k-for-k borrower

swaps across two groups in the same village.40 For example, if we have data on five borrowers

in each of two groups in the same village, there are 5×5 = 25 one-for-one swaps, 10×10 = 100

two-for-two swaps, and so on.41

Consider the model’s expression for ΠL + ΠM from section 2.3, reproduced from equa-

tion 10 here:

ΠL + ΠM =4Y − (r + q)(pi + pj + pi′ + pj′)

+ q

(∑
k∈L

pkp−k +
∑
k∈M

pkp−k

)
+ qε

(∑
k∈L

κk,−k +
∑
k∈M

κk,−k

)
.

Note that all terms in the group payoff function that do not involve interactions between

borrower characteristics drop out of inequality 11, since they appear identically on both

sides;42 hence, we can ignore the non-interaction terms.

We proceed as in section 4.1.3. Since groups contain more than 2 members and since our

data contain a subset of each group (up to 5 members), we use a sample analog expression

for the payoff function. Again, let G be defined as a set of grouped borrowers, SG as the

sampled subset of group G, k as a sampled group-G borrower, pSG

−k as the average risk-type in

the sampled subset of group G excluding borrower k, and κSG

k,−k as the average correlatedness

dummy of borrower k with other sampled group-G borrowers. Then, the sample analog to

40If the larger group in a village has sample size m and the smaller group has sample size n, k is capped
at min{n, m− 1}.

41One could contemplate other kinds of unobserved groupings, for example those arising from a k-borrower
transfer. We choose not to use transfers because they change group size, which was held fixed in the theory.

42Thus coefficients on non-interaction payoff function terms (e.g. E, r) cannot be estimated.
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the (relevant part of the) payoff function is

ΠL + ΠM = q

(∑
k∈SL

pkp
SL

−k +
∑

k∈SM

pkp
SM

−k

)
+ qε

(∑
k∈SL

κSL

k,−k +
∑

k∈SM

κSM

k,−k

)
. (12)

It is this expression that we use for group payoffs in the inequality 11.43

Given data on borrower probabilities of success (pG
i ’s) and correlatedness (κi,j’s), the

parameters q and β̃ ≡ qε can be estimated, but only up to scale, since multiplication by

any positive scalar would preserve the inequality. Note that ε would be identified as β̃/q.

This approach, however, requires data that can capture the existence of correlation (κi,j) as

distinct from the intensiveness (ε) of correlation. That is, to identify ε, κi,j should reflect

the similarity of shocks to which borrowers are exposed, but not the degree of exposure to

those shocks. Our measures of correlatedness (coincidence of income shocks and occupation)

probably cannot be assumed to distinguish existence and intensiveness of correlatedness.

Rather than attempt to identify ε separately from κi,j , we focus on the overall correlation

between borrowers i and j, call it Ci,j ≡ εκi,j . Ci,j is proxied in different ways, depending on

the variable used (see section 4.1.3). When worst year is used, Ci,j = φwst 1{worst yeari =

worst yearj}. When income shock is used, Ci,j = φshk e−|shocki−shockj|. When occupation is

used, Ci,j = φocc( 
occi · 
occj) (i.e. the dot product of the occupational vectors of borrowers i

and j). The φ parameters are assumed strictly positive. Thus, correlatedness is proxied by

similarity in income shocks, bad income years, and/or (agricultural) occupations.

Incorporating Ci,j – for concreteness, proxied here using worst year – and notation similar

43That is, interaction terms involving sampled borrowers are used to estimate the group payoff function.
Similarly, the counterfactual groups are formed via k-for-k borrower swaps across sampled subsets of the
groups. In general, sorting optimality conditions (here, inequality 11) need not hold for random subsets of
groups. However, if types are complements, they do, since if two groups are rank-ordered, so are any two
subsets of the two groups.
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to the above into the sampled groups’ payoff function 12 gives

ΠL + ΠM = β1

(∑
k∈SL

pkp
SL

−k +
∑

k∈SM

pkp
SM

−k

)

+ β2

(∑
k∈SL

1{worst yeark = worst year−k} +
∑

k∈SM

1{worst yeark = worst year−k}
)

,

(13)

where β1 = q, β2 = qφwst, and the terms in the second-line sums represent the fraction of

other, same-group sampled borrowers naming the same worst year as borrower k. Parameter

q can thus be identified in sign but not magnitude; hence, β1 is normalized to +1 or −1 in

estimation.

The main test of the Ghatak (1999) theory and our extension is whether all β’s are posi-

tive. The model assumes that q > 0, which underlies complementarity of types in the payoff

function and hence drives homogeneous matching. A positive estimate of β1 is thus direct

evidence for this complementarity, while a negative estimate would suggest substitutability

of types and that more heterogeneous patterns of matching are being observed. Regarding

β2(= qφwst), since φwst (and φshk and φocc) are restricted to be positive and since q > 0 is

assumed, the model requires a positive estimate for β2. A negative estimate would contradict

the model; in particular, it would suggest that sorting is more consistent with payoffs that

value diversification rather than anti-diversification, in contrast to our theory.

Risk types pG
i , pG

j are measured by prob, discussed in section 3. Correlatedness is proxied

by various subsets of the three measures discussed, worst year, shock, and occupation. If

there are V villages indexed by v, and each village v has two (sampled) groups, Lv and Mv,

the estimator comes from

maxβ1∈{−1,1},β2(,β3)

V∑
v=1

∑
L̃v,M̃v

1{ΠLv + ΠMv > ΠL̃v
+ ΠM̃v

},
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Table 1 — Maximum Score Matching Estimation

Variable Number Share Number Share Number Share Number Share
Prob Est. +1 +1 +1 +1 +1 +1 +1 +1

p-val. Superconsistent
Worst Year Est. 0.40 0.32∗ 0.32 0.33

p-val. 0.18 0.06 0.27 0.31
Income Shock Est. -0.46∗∗ 0.0037

p-val. 0.02 0.30
Occupation Est. -0.062 -0.0029 -0.051 -0.025

p-val. 0.46 0.47 0.34 0.51
Number of Inequalities 3620 3620 3620 3620

Number of Villages 32 32 32 32
Maximized Objective Fn. 2348 19.3 2208 18.4 2205 18.3 2382 19.8

Percent Correct 65% 60% 61% 58% 61% 57% 66% 62%

Note: Each column corresponds to a different estimation; differences arise from the objective function
used (noted atop each column) and the proxies for correlated risk. P-values are from one-sided tests for a
negative (positive) true parameter if the point estimate is positive (negative). They are constructed using
subsampling methods on 200 subsamples, each containing 24 distinct villages. Significance at 5% and 10%
levels is denoted by ∗∗ and ∗, respectively.

where44 the alternate groupings L′
v and M ′

v come from all k-for-k borrower swaps, as discussed

above, and there are three parameters when two proxies for correlatedness are included.

We also estimate based on a slightly different objective function, where the score is the

sum of all villages’ shares of correct inequalities rather than numbers of correct inequalities;

that is, the indicator function for village v is normalized by the total number of inequalities

for village v. This weights each village equally in its contribution to the estimation and

provides a more similar basis of comparison with the univariate KS results, where each

village counts as a single draw from a distribution.45

Maximization is carried out using the genetic algorithm routine in Matlab. Results from

44The estimator uses a strict inequality though theory requires only a weak one. Given a continuous
distribution of match-specific error terms introduced to support the estimator, equalities can be ignored
with probability one.

45The approach here and the univariate approach have similarities and differences. Both essentially com-
pare the observed grouping to unobserved alternatives. The univariate approach proceeds by putting a
metric on this comparison (e.g. variance decomposition) and testing against a random-matching benchmark.
This approach could be applied in the multivariate setting if we knew the relative importance of the multiple
dimensions; in equation 13 above, this is equivalent to knowing β2. In this case, we could calculate sorting
percentiles for each village’s grouping based on the full, multi-variate payoff function (up to scale), and then
proceed to the KS test. However, we do not know β2, and it is the matching maximum score estimator that
provides a way to estimate it.
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eight estimations that alternately use the two objective functions combined with four sets

of proxies for correlated risk are reported in Table 1. The point estimates are based on the

32 villages with sufficient data, and the corresponding 3620 total inequalities. Inference is

carried out by subsampling.46

We find that the estimated coefficient on risk-type, measured by Prob, is consistently

positive. Thus, even when controlling for correlated risk measures, including occupational

similarity, unconditional risk has positive explanatory power for group formation. It also

supports the model, since a positive estimate implies complementarity of risk-types in the

payoff function, which is the basis for homogeneous matching and group lending’s improved

risk-pricing.

The correlated risk results seem less clear. The estimates for occupation are not statisti-

cally different from zero; this is no different from the univariate results, which were discussed

in section 4.2. One estimate for income shock is actually significantly negative, which would

contradict the theory, but the estimate using share rather than number is slightly positive.

Given the relative instability of the shock estimate, and since neither shock nor occupation

have as much explanatory power as worst year (see last two rows of Table 1), worst year

seems the preferred proxy for correlated risk.

The results using worst year are more salient, if somewhat weak statistically. The esti-

mates are relatively stable in the 0.32−0.40 range, and a negative coefficient can be rejected

at the 10% level in the share case and a 20%-level in the number case. When combined with

occupation, the estimates do not change but the significance levels drop. We interpret these

results are mildly supportive of both aspects of the sorting theory; they suggest that group

payoffs are higher with greater homogeneity on both unconditional risk and correlated risk

46Fox (2008) notes that the bootstrap is proved inconsistent by Abrevaya and Huang (2005) for a class of
estimators that converge at rate 3

√
n, which almost certainly includes the matching maximum score estimator.

Thus, for each estimation, we create 200 subsamples containing 24 villages’ data, by randomly sampling
without replacement from the 32 villages. Estimation is carried out for each subsample. Operating under
the assumption of 3

√
n-convergence, one can apply the distribution of

(
24
32

)1/3 (β̂24,i − β̂32) to (β̂32 − β0) to
construct confidence intervals, where i ∈ {1, ..., 200} corresponds to the subsamples, β̂24,i are the subsample
estimates, β̂32 is the full-sample estimate, and β0 is the true parameter. See Politis et al. (1999, 2.2).
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dimensions. Though the other two proxies are not as supportive of the theory, the case can

be made – based on the results of Table 1 and caveats in section 3.2 – that they are inferior

proxies for correlated risk.

In summary, controlling for correlated risk, matching appears homogeneous by risk-type.

There is also suggestive evidence that controlling for risk-type, anti-diversification of risk

raises group payoffs and thus becomes a goal in group formation.

6 Conclusion

In the context of joint liability lending and unobserved risk type, theory suggests that bor-

rowers will sort homogeneously by risk; this embeds an effective discount for safe borrowers

and improves efficiency. However, theory also suggests that borrowers may sort to anti-

diversify risk and thereby to minimize potential liability for their fellow group members.

While the first kind of sorting works in favor of efficiency, the second may work against it

by limiting the lender’s ability to use group lending effectively.

We test these matching predictions using data from Thai borrowing groups, and find

supporting evidence. Direct comparisons to random matching using Kolmogorov-Smirnov

tests give evidence that groups are more homogeneous than random in unconditional risk

and in types of risk exposure. Multivariate tests using Fox’s (2008) matching maximum score

estimator give some confirmation that the payoff to similarity is positive, in both dimensions.

Thus voluntary sorting appears to be resulting in a discount to safe borrowers, but also may

be limiting effective liability via anti-diversification.

These results provide direct evidence on a mechanism by which group lending can improve

efficiency in micro-lending markets. They add to our understanding of how innovations in

lending have been able to extend finance to the world’s poor and why group lending has

been such a popular lending mechanism in the microcredit movement.

The anti-diversification results of this paper cast doubt on the common view of micro-
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credit groups mainly as risk-sharing mechanisms. While the lender may prefer as diversi-

fied a group as possible – because this causes joint liability to bind more frequently and,

thus, enhances the safe-borrower discount – groups themselves have (private) incentives to

purposefully form groups that cannot share risk well. Thus, via sorting incentives, group

contracts may limit the effectiveness of microcredit groups as risk-sharing mechanisms.

From a policy standpoint these results show that voluntary sorting by borrowers may

also have its downside. Sorting to anti-diversify can work against the lender’s interests and,

in equilibrium, the borrowers’. Applying the results narrowly, lenders may want to intervene

to promote risk diversification within groups – for example, requiring occupational diversity

– provided their intervention will not prevent homogeneous risk matching. More generally,

lenders may wish to step in with respect to group composition on certain dimensions while

leaving other dimensions to the borrowers’ discretion.

The paper leaves some open questions for future work to address. First, the risk and

correlation measures used here could be improved upon. Future work with income histories

and/or more detailed elicitations of future income distributions could perhaps push the

analysis further, including in a more quantitative direction. Second, it would be ideal for

sorting tests to use measures of risk that pre-date group formation, to distinguish sorting

patterns from within-group conformity or imitation that occur after group formation. Third,

richer datasets that include data on social networks, physical distances, etc., could potentially

be used to identify whether risk-homogeneity and anti-diversification are purposeful or are

by-products of other matching considerations. They could also help quantify and pinpoint

matching frictions in these environments.
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Appendix

Proof of Proposition 1. Consider a set of equilibrium groups. There are six sets

into which all groups can be partitioned: AA, BB, NN, AB, AN, BN, where the set names

denote the risks faced by the two borrowers. For example, set AA contains all groups with

two A-risks and set BN contains all groups with one B-risk and one N -risk.

The cross-partial of group payoff functions with respect to pi and pj is still given by

equation 2. This implies that the baseline result of homogeneous matching in almost every

group holds in any set of groups within which κi,j is fixed for all possible pairings of borrowers

within the set – in particular, AA, BB, and NN.

We show next that the sets AB, AN, and BN have zero measure in equilibrium. Consider

AB, for example. Risk-type complementarity implies rank-ordering within risk exposure

type: the safest A-risk matches with the safest B-risk, and so on. That is, if (i, j) and (i′, j′)

are groups and borrowers i, i′ (j, j′) are A-risk (B-risk), then one of the following pairs of

statements must hold: pi ≥ pi′ and pj ≥ pj′, or pi′ ≥ pi and pj′ ≥ pj. Otherwise, the grouping

(i, j′) and (i′, j) would raise surplus by increasing payoffs from risk-type complementarity

without altering the nature of the exposure-type matching.

Given this fact and if set AB has positive measure, then for any δ > 0, there must exist

two groups (i, j) and (i′, j′) with |pi − pi′| < δ and |pj − pj′| < δ. Fix δ =
√

ε/4 and two

such groups. We will show that with risk-types so close, the gains from anti-diversification

(matching A with A, B with B) outweigh any losses from decreased risk-type similarity.

Without loss of generality, let (i, j) be the safer group (i.e. pi ≥ pi′ and pj ≥ pj′) and

borrower j be the safest in that group (pi ≤ pj). Using equation 7, the sum of both groups’

payoffs can be written

4Y − (r + q)(pi + pj + pi′ + pj′) + 2q(pipj + pi′pj′) ,

since no borrowers are exposed to the same shocks. An (i, i′) and (j, j′) grouping would

instead give rise to

4Y − (r + q)(pi + pj + pi′ + pj′) + 2q(pipi′ + pjpj′) + 4qε ;

the last term represents the savings from matching with borrowers exposed to the same shock.

This alternative grouping gives higher total surplus and thus represents a contradiction if

4qε − 2q(pi − pj′)(pj − pi′) > 0.
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Note that pj ≥ pi ≥ pi′, the first inequality by construction and the second by rank-ordering;

so, the last parenthetical is non-negative. If pi ≤ pj′, the first parenthetical is non-positive

and the inequality holds.

Consider instead pj′ < pi. Since pj ≥ pi and since pj′ ≥ pj − δ, by hypothesis, then

pj′ ≥ pi−δ; thus, pj′ ∈ [pi−δ, pi), so the first parenthetical is bounded above by δ. Regarding

the second parenthetical, note that pi′ ∈ [pi − δ, pi], by hypothesis and rank-ordering. Also,

it must be that pj ≤ pi + δ; otherwise, pj′ ≥ pj − δ could not be true (given pj′ < pi). Thus

the second parenthetical is bounded above by 2δ. Using these upper bounds minimizes the

left-hand side of the above inequality, which becomes

4qε − 2qδ(2δ) = 4qε − 4qδ2 = 4qε − qε = 3qε > 0.

Thus AB cannot have positive measure in equilibrium.

Similarly, AN and BN cannot. The only difference in the argument is that the borrower

swap outlined above would add 2qε rather than 4qε to sum of the groups’ payoffs – this

would still raise total surplus.

Proof of Proposition 2. Let there be N groupings and K ≤ N unique values that arise

when the given sorting metric is applied to the N groupings, with values v1 < v2 < ... < vK .

(Ties involve K < N .) Let ni be the number of combinations that give rise to value vi and

Ni be the number of combinations that give rise to any value v ≤ vi, with N0 ≡ 0; then

Ni =
∑i

k=1 nk and NK = N . If sorting is random, each of the N combinations of borrowers

is equally likely to obtain. With probability πi ≡ ni/N the realized combination will result

in value vi, leading to calculated sorting percentile range [Ni−1

N
, Ni

N
].

We show next that the CDF of sorting percentiles is uniform, i.e. F (z) = z. Fix z ∈ [0, 1].

There exists some i ∈ {1, 2, . . . , K} such that z ∈ [Ni−1

N
, Ni

N
]. Then the probability that a

village’s sorting percentile is less than z, i.e. F (z), is the probability that its grouping leads

to any value strictly less than vi plus the probability that its grouping leads to value vi and

its sorting percentile picked from the uniform on [Ni−1

N
, Ni

N
] is below z:

F (z) =

i−1∑
k=1

πk + πi

∫ z

Ni−1
N

1
Ni−Ni−1

N

dz =

i−1∑
k=1

nk

N
+

ni

N

N

ni
(z − Ni−1

N
) = z,

where the definitions of the πi’s and the Ni’s have been used in the simplification.
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Figure 1: Solid: Sample CDF of villages’ sorting percentiles based on rank correlation
Kendall’s taub (left panel) and the sum of group payoff functions (right panel) for prob,
the probability of realizing high income. Dashed: Uniform CDF.
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Figure 2: Solid: Sample CDF of villages’ sorting percentiles based on rank correlation
Kendall’s taub (left panel) and variance decomposition (right panel) of the coefficient of
variation for income (standard deviation / mean). Dashed: Uniform CDF.
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Figure 3: Solid: Sample CDF of villages’ sorting percentiles based on the sum of group
payoff functions (left panel) and the chi-squared statistic (right panel) of the worst year for
income. Dashed: Uniform CDF.
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Figure 4: Solid: Sample CDF of villages’ sorting percentiles based on rank correlation
Kendall’s taub (left panel) and the sum of group payoff functions (right panel) for income
shocks. Dashed: Uniform CDF.
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Figure 5: Solid: Sample CDF of villages’ sorting percentiles based on the sum of group payoff
functions (left panel) and the chi-squared statistic (right panel) for occupation. Dashed:
Uniform CDF.
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