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1. Introduction; 
The aim of this paper is to take stock of the important 

recent contributions to spectral analysis, especially as 
they apply to non-stationary processes. Non-stationary 
processes are particularly relevant in the empirical 
sciences where most phenomena exhibit pronounced departures 
from stationary. That detrending and various other 
filtering operations to induce stationarity lead to 
distortions in the true spectrum has been known for quite 
some time now (see Slutzky (1937), Moran (1953), Grenander 
and Rosenblatt (1957) etc.). This suggests that analysing 
the spectrum of a non-stationary process directly may have 
much to recommend itself. 

The plan of the paper is as follows. Section 2 is 
devoted to preliminaries. Some early attempts to introduce 
time-changing spectra are analysed in section 3. The 
important concept of "evolutionary spectrum" due to 
Priestley (1988) is discussed in section 4, whereas the 
fundamental contributions of Zurbenko (1986) are reviewed in 
section 5 Conclusions are gathered in section 6. 
2. Preliminaries; 

Since several of the results mentioned in section 5 
depend on "mixing" conditions, we begin by defining 2 types 
of mixing conditions. 
Rosenblatt mixing condition (Rosenblatt (1985)} Let X(t) be 

a time-series and let   denote the a-algebra generated by 
the random variables                   The Rosenblatt mixing 
condition states that 

                            
(1) 

where  

Ibragimov mixing  condition   (Ibragimov(1962)); 

                                                                                            
(2) 

where A,B are as defined above. 
Stated in this form, the Ibragimov mixing condition is not 
satisfied by stochastic processes with values in Hilbert or 
Banach spaces, 'and hence, the additional restriction. 



                                     
(2) 

is usually imposed. 
For a discrete parameter stationary process we have 

the following spectral representation. 

                                       
(3) 

where  B(w)  is  a  stochastic  process  with  orthogonal 
increments. 

Let denote the cumulanta of the 
stationary process - they are shift-invariant because of 
stationarity. 

Spectral measures :the quantity defined on the cube  

[-n,nj x .... x f-n,nj (n times) by 

 

                     
(4) 

where is called the spectral measure of order n. 
It can be shown that for a stationary process the 

spectral measures  are concentrated on the manifolds 

 (mod 2) and can be written in the form 

 
.           (5) 

where?  and  being the Dirac 
delta-function. The quantities may be called the spectral 
densities (n*2 corresponds to the ordinary spectrum, n=3 to 
the bispectrum etc.) (See e.g. Brillinger (1975)) 
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3. Time-dependent spectra: 
Page's spectrum 

Possibly the first attempt to define a time-dependent 
a spectrum occurs in Page (1952). For a continuous parameter 
process {X (t)), Page introduces the quantity 

                            
(6) 

and defines the instantaneous power spectrum as 

                                (7) 
 Thus (w) roughly measures the difference between the 
power distribution of the process over the interval <o,t) 
and over the interval (o,t + dt). 

Mark's Physical Spectrum 

For a continuous parameter process X(t), Hark (1970) 
introduces the concept of the physical spectrum as follows! 

           
(8) 

where W(t> is a suitable real-valued function with W(0) > 0 
,W(t> is concentrated in the neighborhood of t = 0 and 

 

Tjostheim Spectrum; 
Cramer (196JL) has shown that for a discrete parameter 

process which is purely non-deterministic, the following 
I "-aided linear representation exists 

                                           
(9) 
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Where t is a white noise innovation. Tjostheim (1976) 
proposed a definition of a time-dependent spectrum- based on 
(9) 

 
(10) 

where  
Melard (1978, 1985) has suggested a similar approach. 

Details of these early attempts as well as some of their 
limitations have been reviewed in Priestley (1988), where 
also the concept of an evolutionary spectrum is introduced. 

4. Priestley'a Evolutionary Spectrum: 
Priestley developed the concept of the evolutionary 

spectrum in a series of papers (Priestley (1965, 1966, 
1969) but finds its clearest exposition in Priestley (1988). 
In the interests of uniformity, throughout this discussion, 
the underlying process X(t) is assumed to be a complex 
continuous parameter process* If X(t) were stationary, the 
representation (3) would be possible and then the covariance 
kernel R(s,t) Would admit the corresponding representation 

 
(11) 

where H(w) is the integrated spectrum of X(t). 
For non-stationary processes both representations (3) 

and (11) are ruled out. However as shown by Priestley (1981) 
an appeal to the theory of "general orthogonal expansions" 
can yield for a fairly general class of stochastic processes 
the following representation for R(s,t) 

(12) 

  

where  are a family of functions F defined on the real line and  is a measure on the real line. 
Sharper results might, be obtained by assuming that 

 is absolutely, continuous w.r.t. the Lebesgue measure on the real line. 
Of special significance are the so-called oscillatory 

functions  
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Oscillatory function: the function will be called an 
Oscillatory function if for some (w) it can be written in 
the form 

                        
(13) 

With 

                              
(14)  

where =0 yields an absolute maximum for  

Oscillatory Process if there exists a family of oscillatory 
functions   in terms of which X (t) has the representation 

                                    
(15) 

with Z(w) an orthogonal process with 

                               (16) 
then the process X<t) will be termed an oscillatory process. 

For any particular process {X(t)l there would exist in 
genera] a  number  of  different  families  of  oscillatory 
functions  in  terms  of  each  of  which    has  the representation (1.5). If F denotes a specific family of such 

oscillatory functions (of the form (13), then the 
evolutionary power Spectrum at time t w.r.t. F is defined by 
Priestley as dH t (w) where 

                              (17) when additionally the measure  is absolutely 
continuous w.r.t. the Lebesgue measure we may write for each 
t 

                                       (18) 
 

and       may then be called the evolutionary spectral 
density function  

Bandwidth Considerations   For each family F with 
oscillatory functions represented by (13), the following 
quantity is defined 

                                
(19) 

define BF as 

                                  
(20) 



If   is finite, the family P is called semi-stationary and 
 itself is called as the characteristic width of the family P. 

A semi-stationary process {X(t)l is one  for which  3 a 
semi-stationary  family  Fwhich  can  furnish  a  spectral 
representation for X(t). 
Let C denote the class of all such semi-stationary families. 
Define    by 
 

 
(21) 

then 
 
is termed the characteristic width of the semi-

stationary process {X(t)}. 

Estimation;   Let   X(t)   be   a   continuous   parameter 
semi-stationary process over (O,T), with measures 
corresponding to the semi-stationary families, absolutely 
continuous (w.r.t. the Lebesgue measure). The evolutionary 
spectral density(w) may then be estimated by the 2-atage 
procedure suggested by# Priestley and Tong (1973) which 
involves (i) first passing the data through a linear filter 
concentrated on a typical frequency say and yielding an (ii) and second, computing a weighted average of  the neighb  in the neighborhood of the time point t. This 
yields an e  estimate Formally expressed 

 
(22) 

where g(u) is a filter whose transfer function r(a>) is 
peaked in the neighborhood of w = o and is normalised so 
that its square integrates to 1 over the range  The filter width ,   is much 
smaller than(to achieve high time domain resolution). The 

total power density at     may then be defined as 

 
(23) 

where w(v) is normalised to integrate to unity and has a 
"width" substantially in excess of    (for attaining high 
frequency-domain resolution); 
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The  extension  to  the  discrete  parameter  case 
Straight forward and an economic application may be found in 
Nachane and Ray (forthcoming 1992)* 

5. Kolmogorov-Zurhenko Results: 
A The Stationary Case: 

Several results of fundamental significance in spectra] 
analysis were initiated by Kolmogorov and Zurbenko (1978) 
and were later followed up by Zurbenko (1980, 1982, 1986). 
To view these results in perspective, a quick retreading of 
familiar grounds may be necessary. 

Let X(t) be a stationary time series, on which the 
record {X(1),...X(N)} of length N is available. The spectrum 
of X(t) is denoted by f(M and it is assumed that E(X(t))=0. 

 
(24) 

(where IN(x) is the modified periodogram and  is a 
function continuous  in  with Fourier coefficients 

 is called an estimate of the Grenander-Rosenblatt 
type. 
 Parzen (1957) focused attention on a more restricted 
class 

of the estimates  in which the spectral window <£ (x) 
can be represented as 

         
 (25)  

where 

               (26) 

and 
 (27) 

The function K(x), as is well-known, is called the 
oovariance window of the estimate. Parzen (1957) then 
proved the following theorem, which bears his name. 

Theorem: Suppose that for some a > 0 the quantity 
  
 

(where c(t) is the auto-covariance function) and further 
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that the in   ( 2 5 )    are  chosen  to  satisfy 

 

(29) 

Let be the index of K(x) i.e. r is the largest value of r for which 
(30) 

 
exists  
Then 

          
(31) 

provided the following conditions hold. 
(i)  

(ii) the process X(t) possesses moments of the 4th order. 
The function is defined as follows 

= 1   if * 0  
(32) 

 = 0   if  = 0  

The above theorem implies that the least possible order of 
the MSE of  is  where is the maximal 
value of ot for which (28) is true. However this may not be 
the least possible order on the class of all estimates 
of the Grenander-Rosenblatt type. The solution of this more 
general problem was fully worked out by Zurbenko (1978) and 
Vorobjev and Zurbenko (1979). For the sake of expository 
simplicity the discussion is restricted to discrete 
parameter processes 

Let  be a record
 of such a process and 

choose 
integers L, M, T (functions of N) st 

(i) L < M < N 
(ii) N = (T-l) T, + M + 1 (33) 

and (iii) LT =N 
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Let a  (t) be a non-negative function vanishing outside [o,M]. 
  M 

Define 

                      
(34) 

and 

                       

(35) 

It can be seen that 

                            
(36)  

We now assume that the coefficients aM(t) are chosen such that 

                                       
(37) 

Zurbenko then defines the estimate fN () of the  spectral density 
f() of X,. by 

 
 

 

with L,k,T chosen to satisfy  (33)                       
The asymptotic behaviour of the MSB of (38) is obtained in 
Zurbenko  (1986),  for a special  class of processes X(t) 
characterised as follows! 
Definition: The set O is defined as the set of stochastic 
processes with zero mean which possess second and fourth 
order  spectral densities. 
Definition: Suppose X(t) =O  ; we now define a subset of O 
viz. 
 
 
 

W (,f ,f 1 .. .f[]. ., , C, C1 ) if V p and some given , f  o, 
 

 > 0 C  0, C1  0 with the f1's as defined in (5) (Also 
) denotes the integral part of a), the following holds 
(i)  
and 
(ii)the 4th order spectral density f4(x1...x4) of X(t) is bounded 
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(40) 

The spectral kernels (35) are also somewhat restricted. 
Specifically the following conditions are imposed. 
(i) For any Q, the sequence of functions {  has 
each member evencontinuous,  and of period 2, 
 

(ii) Each tends to o uniformly in the region e  |x|   for 
any  > o. 

 

and  

 

and finally 
(iv)  

then 

 
The lower bound (asymptotic) of the MSB is now given by the 
following theorem. 
 

 

Theorem: For the estimate f N () with  fixed, we have 

 
 

 (41) 
 
 where X(t)  W (       ) and ^ (x)are restricted as defined 
earlier; n(() is defined by (32) and 
In H() = -(l/l + 2) ln(l + 2) + ( 2/l+2) ln(n ( + 1)/ )      (42) 
For the practical choice of aM(t), two alternatives may be 
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considered, either a Bartlett (1950) type of window or a 
Kolmogorov-Zurbenko <1978) type of window. 

Bartlett:  

 

Kolmogorov-Zurbenko:  

where M =K <p-l) and Ck,p o(t) is the coefficient of Zt  in the 

expansion  

and (K,P) is chosen to satisfy the normalizing condition 
(37). 

B. Extension to the non-stationary cage? 
Zurbenko (1991) has extended some of the preceding 

considerations to the non-stationary case. The non-
stationary process X(t) is imagined as (dependent on two 
parameters) X(t,u) and is assumed covariance stationary with 
respect to the discrete parameter t and dependent on the 
continuous real parameter u, which is supposed to capture 
slow changes in the spectrum. The process X(t,u) is assumed 
to satisfy a number of conditions. 
(i)  Uniformly bounded absolute moments exist upto  (and 
inclusive of) the 4th order i.e. 

 
(ii) The random variables X(t,u) are continuous in the mean aqua 
with respect to the parameter u. 

 
where p  is a constant. 
(iii) The 4th cumulanta C. of (X(tru) should be continuous 
w.r.t. u i.e. 

 
(iv)  Either the Rosenblatt mixing condition  (1) or the 
Ibragimov mixing conditions (2) and <2') are valid. 

Let the covariance function of X(t,u) be denoted by 
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                       (43) 
under the assumed conditions (i) to (iv) C(k,u) which is 
independent of t (in view of stationarity in t) exists and 
is bounded. Further both C(k,u) and the spectral density 
f(.,u> turn out to be weakly dependent on ur as shown by 
Ibragimov and Linnic (1971). 

(44) 

                
(45) 

have assumed the Ibragimov mixing condition for specificity. 
Analogous formulae hold for the Rosenblatt condition). 

Analogously to  (34),  the modified periodogram for 
X(t,u) may be defined as^ 

                    
(46) 

(see Zurbenko (1991)). 
Let the other entities occurring in (35)-(37) be modified 
similarly. The expression for the spectral density estimate 
now becomes 
 

 
(47)  
 
where L,K,T are to satisfy (33). 
The asymptotic normality of is proved in Zurbenko 
(1986).v 
Its mean is  ( the true spectral density )and its 
variance is 

 
(48) 

where
       

. (49) 

Under conditions (i) to (iv) listed above for X(tru) 

 

 
(50) 

i.e. small deviations from stationarity will have a small 
influence on the variances of the spectral estimates. 

From an inferential point of view, primary interest: 
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where fk and f are from (2) and (2). In (44) and (45) we 



attaches to the matrix 
 
 

 (51) 
 

with k=l,2...T and . (O,) 
 which is composed of asymptotically non-correlated 
elements 
distributed as 
Stationarity inappropriate frequency bands can now be 
checked by standard multivariate techniques such as ANOVA 
(along the lines, for example, suggested by Priestley and 
Subba Rao <1969) for the evolutionary spectrum. 

6. Conclusions: 
Several approaches to the problem of estimation of a 

time-varying spectrum have been reviewed in this paper. The 
implications of these methods can be of far-reaching 
significance for various applied disciplines. Prom a 
theoretical point of view the methods of Priestley and 
Zurbenko have several features in common; the idea of 
oscillatory processes on which Priestley bases the concept 
. of the evolutionary spectrum loosely corresponds to "slowly 
changing processes", Zurbenko1s reliance on mixing 
conditions corresponds to limitations on "remote frequency 
dependence". A Monte Carlo investigation of stationarity 
tests implied by the 2 approaches is currently in progress 
(by the author). A further project proposes to devise 
stationarity tests as well as tests for structural breaks 
based on some of the other approaches discussed. 
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FOOTNOTES 
1. A measure v is said to be absolutely continuous w.r.t. a 
measure     if for every measurable set A with   (A) = 0, 
we have v(A) = 0 
2. Although the evolutionary spectrum defined by (17) is not 

invariant to the choice of the family F, the integral 

 
is independent of this choice. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

14 
 



 
REFERENCES 

I) Bartlett,  M.S.(1950)  :  "Periodograms  analysis  and 
continuous spectra" Biometrika v.37 p.1-16 
2)Brillinger,D.R.(1975) : Time Series : Data Analysis 
and Theory   HoltrRinehart & Winston, New York 
3) Cramer,H (1961)  :  "On some classes of non-stationary 
stochastic proceses" Proceedings of 4  Berkeley 
Symposium vol.2 wp.57-78 
4)Grenader.U. and M.Rosenblatt (1957);"Statistical 
Analysis  of  Stationary Time Series" Wiley, 
New York. 
5) Herbst L.J.<1964) " Spectral analysis in the presence of 
variance  fluctuations."Journal of Royal Statistical Society 
, Ser B.vol 2 pp 354 - 360. 
6) Ibragimov I.A.(1962) " Stationary Gaussian sequences that 
satisfy the strong roixingconditions." Dokladi  Akademic 
Nauk SSSR  vol.147,  no  6  pp 
1282- 1284. 
7) Ibragimov.I.A. and Y.C.Linnic (1971) t" Independent  and 
Stationary Sequences of Random Variables"   Volters-Nordoff 
Groningen. 
8) K.Karhunen  (1947):  "  Uber  lineare methoden  in der 
Wahrscheinlichkeitsrechnung"   Ann.Acad Sci  Fenn Ser.A vol 
37 (Heilsinki. 
9) Kolmogrov .A.N. and 1.6. Zurbenko(1978): "Estimation of 
Spectral     Functions     of     Stochastic     Processes" 
11th European  Meeting  of Statisticians Oslo. 

10) Loynes.R.M. (1968):" On the concept of the spectrum for 
non-stationaryprocesses" 
Journal of Royal Statistical Society.  Ser.B.vol 30.pp 1 - 
30. 
II) Mark.W.D. (1970): " Spectral analysis of the convolution 
and  filtering  of  non-stationary  stochastic  processes." 
Journal  of  Sound Vibrations vo1.11 pp. 19. 
12) Melard.G.(1978): "Proprietes du spectra evolutif d'un 
processus non-stationnaire" Ann.Inat Henri Poincare Sect.B. 
vol.14, pp 411- 424. 
13) Melard G(1985)  :"  An  example of  the evolutionary 
spectrum theory." 
Journal of Time-Series Analysis.vol.6 pp 81-90. 
14) Moran P.A.P.(1953):"The Statistical analysis of the 
Canadian  Lynx  cycle:  I  -  Structure  and  prediction  " 
Australian Journal   of Zoology. Vol.lpp 163 - 173. 

15 



15) Nachane.D.M. and D,Ray( 1992) .1 "Modell ing exchange rate 
dynamics)  New    perspectives  from  the  frequency 
domain". 
Journal of Forecasting  (forthcoming). 
16) Nagabhuahanam.K   and   C.S.K.Bhagavan   (1968)    
"Non-stationary       Processes       and       Spectrum'' 
Canadian Journal of  Mathematics. vol.20 pp 1203 - 1206. 
17) Page.C.H.(1952)   "Instantaneous   power   spectra" 
Journal of Applied Physics.vol.33 pp 103- 106. 
18) Parzen.E.(1957);  "On  consistent  estimates  of  the 
spectrum       of       a        stationary        time 
aeries." Anna1a of Mathematica1 Statiatica, vol 28, pp 329 - 
348. 
19) Priestley  M.B.Q965)   "Evolutionary  spectra   and 
non-stationary 
processes" Journal of Royal Statistical Society,     Ser.B* 
vol.27 pp 204 - 237. 
20) Priestley    M.B,{1966);"Design    relations    for 
non-stationary 
processes." Journal of Royal Statistical Society,     Ser.B. 
vol.28 pp 228 - 240. 
21) Priestley  M.B.(1969)  "Control  systems  with  time 
dependent parameters." Bui 1.Tnst.Int.Statistics.vol 37. 
22) Priestley M.B.(1988) 
Non-linear, and Non-stationary Time  Series Analysis 
Academic Press., London. 
23) Priestley M.B. and T.Subba Rao (1969) : " A test for 
stationarity          of          time series" 
Journal of Royal Statistical Society.8er B. vol.31, pp 140 - 
149. 
24) Priestley,M.B. and H.Tong (1973) : "On the analysis of 
bivariate        non-stationary        processes        " 
Journal of the Royal Statistical Society 
Ser.B vol.35, pp.153-166. 
25)Rosenblatt,M.(1985): 
Stationary Sequences and Random Fields. Birkhauser, Boston* 
26) Slutzky .E.(1937):"The summation of random causes as the 
source of cyclical processes.* Econometrica, vol.5, pp 105 - 
146. 
27) Tjostheim, D.(1976) : "Spectral generating operators for 
non-stationay 
processes" Advances in Applied Probability vol.8 pp 831  - 
846. 
28) Vorobjev L.S.and I.G.Zurbenko (1979) "The bounds for 
the  power  of  C(a)-  testa  and  their  applications." 
Teor.Verojatnoaiti   i   Pritnenen,   vol,24(2),   pp   252 
-266.(Russian).   ' 
29) Zurbenko.I.6.(1978)i      "On     estimators     of     a     spectral 

16 



density with weak dependence on distant frequencies". 
Teor. Verojatnositi i Priroenen vol.Mat.Stat vol.19 p 57-
66.30) 
Zurbenko.I.G.(1980) " On effectiveneaa of estimators of the 
spectral density of a stationary processes :I" ! 
Teor.Verojatnositi   i   Primenen,   vol.24(2),   pp   252 
-266.(Russian). 
31) Zurbenko.I.G.(1980) " On effectiveness of estimators of 
the spectral density of a stationary processes :II" ! Teor. 
Verojatnoaiti i Primenen, vol.28(3), pp 388 -396.(Russian). 
32) Zurbenko.I.G.(1986):  The  Spectral  Analysis 
of Time Series,   North-Holland, Amsterdam. 

33) Zurbenko.I.G.(1991):"Spectral analysis of non-stationary 
time  series" International Statistical Review.  vol.59  p 
163-174. 


