What Determines the Academic and Professional Participation of Economists?

S.K. Mishra Department of Economics North-Eastern Hill University Shillong, India

1. Introduction: Even a casual overview of rankings of economics departments and economists conducted by *Internet Documents in Economics Access Service* (IDEAS) would reveal that economists of some countries participate more vigorously (than those of some other countries) in academic and professional activities. For example, a small country like Switzerland with 7.5 million population showed the participation of 75 institutions and over 300 economists while a much larger country like India with a total population over 1100 million (having over 300 university departments of economics and a large number of colleges having economics departments) exhibited the participation of only 65 institutions and 170 economists. Assuming that economists (working in various teaching and research institutions) all over the world are engaged in academic and professional activities which, to a great extent, is reflected in their publications, it is a natural question to ask as to why there is so much of variation among different countries regarding the relationship between the total number of economists and the total number of *participating* economists. This is the query that has motivated the present work.

2. The Hypotheses and the Data Base: The IDEAS publishes every month the rankings of economists (and departments of economics including research institutions working in the related areas) in different countries. These rankings are based on a large number of measures (31 in number), including publication (no. of pages) in journals, citations, impact factor, viewing of abstracts and download of papers, etc (Zimmermann, 2007). A list of top 20 percent institutions and authors is presented for a number of countries. In this study we have used the data published by the IDEAS (Research Papers in Economics, RePEc) for August 2008.

A cursory view of the data (see Table-1.A) suggested that developed countries show up larger participation of economists in publishing. It is also well known that in several developed countries the 'publish or perish' policy is prevalent. This policy motivates economists to conduct research, writing and publishing, although sometimes at the cost of lessened efforts to teaching (Tylor et al., 2006). This is effectively not so in the less developed countries where professionalism (Feldman, 2006) is yet to come and hence teaching is the main job of the academic economist. Hence, our first hypothesis is that the level of economic development of a

country determines the participation of economists in academic (and professional) activities leading to publication in journals, including e-publication of working papers.

Several criteria of ranking by the IDEAS are internet related. Internet browsing is largely computer-based which may or may not be operated through cell phones. Academic performance is heavily dependent on access to the academic works of the peer scholars and ease of communication of research work among the peer group, which is greatly facilitated by the internet (Mishra, 2008). Hence, it is conjectured that availability and popularity of internet use and cell phones may influence participation of economists in academic and professional pursuits. It is also visualized that availability of telephones (which is necessary for fax facilities) would complement internet and cell phone. Finally, literacy, which is a general measure and basis of development, may be an explanatory factor of academic performance of a country.

The size of population of a country may be used as a measure of its largeness. Larger countries usually will have larger number of academic institutions. Economics is a popular academic discipline that is taught and researched in most of the educational institutions, universities and colleges throughout the world. Consequently, larger countries are likely to have larger number of economists in their institutions. To neutralize the size effect, therefore, the size of population may be used as a deflator so that all countries can be brought to the same or comparable base. Population size should also be used as a deflator for other variables such as number of telephones, internet users, etc.

Data on per capita income (which may be used as an indicator of the level of economic development of a country), population, literacy rate, number of telephones, cell phones and internet users are obtained from the CIA World Fact Book 2006. These data are presented in Table-1-A. The deflated or re-scaled data are presented in Table-1.B.

Та	Table-1-A. Basic Data on Economists' Participation and its Conjectured Determinants									
Country	No. of Participating Institutions#	No. of Participating Economists#	Population (Millions)	Literacy Rate (per cent)	PC Income (000 US- \$)	Tele- phone (in 000)	Cell phone (in 000)	Internet Users (in 000)		
Argentina	35	105	39.92	97.1	13100	8700	13512.4	10000		
Australia	100	530	20.26	99	31900	11660	16480	14189.54		
Austria	30	180	8.19	98	32700	3791	7990	4650		
Bangladesh	5	10	147.37	43.1	2100	831	2781.6	300		
Belgium	70	395	10.38	99	31400	4801	9131.7	5100		
Bolivia*	1	15	8.99	87.2	2900	646.3	1800.8	350		
Brazil	65	250	188.08	86.4	8400	42382.2	65605	25900		
Bulgaria	10	20	7.39	98.6	9600	2726.8	4729.7	630		
Canada	130	830	33.10	99	34000	20610	14984.4	20900		
Chile	25	110	16.13	96.2	11300	3318.3	9566.6	5600		
China	30	65	1313.97	90.9	6800	311756	334824	111000		
Colombia	20	140	43.59	92.5	7900	7767	10400.6	3585.688		
Croatia*	1	20	4.49	98.5	11600	1887.6	2553	1014		

Cyprus	5	20	0.78	97.6	21500	418	800	298
Czech_Rep	10	110	10.24	99	19500	3427.7	10782.6	4800
Denmark	35	150	5.45	99	34600	3487.8	5168	3762.5
Ecuador*	1	5	13.55	92.5	4300	1612.3	3544.2	624.6
Egypt	5	10	78.89	57.7	3900	10400	14045.13	5000
Estonia	5	15	1.32	99.8	16700	444	1255.7	670
Ethiopia*	1	5	74.78	42.7	900	435	178	113
Fiji*	1	10	0.91	93.7	6000	102	109.9	61
Finland	30	90	5.23	100	30900	2368	4988	3286
France	230	1130	60.88	99	29900	33870.2	44551.8	26214.17
Germany	235	1555	82.42	99	30400	54574	71300	48722.06
Greece	25	150	10.69	97.5	22200	6348.8	9305.7	3800
Hong Kong	15	50	6.94	93.5	32900	3794	8214	4878.713
Hungary	15	80	9.98	99.4	16300	3577.3	8727.2	3050
Iceland*	1	5	0.30	99	35600	190.5	290.1	225
India	65	170	1095.35	59.5	3300	49750	69193.32	50600
Indonesia	10	35	245.45	87.9	3600	9990	30000	18000
Iran	5	10	68.69	79.4	8300	14571.1	4000	8000
Ireland	20	115	4.06	99	41000	2019.1	3780	2060
Israel	20	115	6.35	99	24600	3000	7000	3000
Italy	25	1330	58.13	95.4	24600	25957	62750	28870
Jamaica*	1	5	2.76	98.6				1067
					4400	342	2200	
Japan	90	275	127.46	99	31500	58788	91473.9	86300
Luxembourg	5	25	0.47	100	55600	360.1	539	270.8
Malaysia	15	55	24.39	88.7	12100	4446.3	14611.9	10040
Mexico	25	80	107.45	92.2	10000	18073.2	38451.1	16995.4
Netherlands	90	635	16.49	99	30500	7861	14800	10806.33
New_Zealand	25	115	4.08	99	25200	1800.5	3027	3200
Nigeria	5	5	131.86	68	1400	1395.786	21571.13	1769.7
Norway	20	150	4.61	100	42300	2228	4163.4	3140
Pakistan	20	70	165.80	48.7	2400	4502.2	5022.9	7500
Peru	10	30	28.30	87.7	5900	2049.8	4092.6	4570
Philippines	5	15	89.47	92.6	5100	3437.5	32935.9	7820
Poland	25	65	38.54	99.8	13300	12458	29260	10600
Portugal	55	295	10.61	93.3	19300	4238.3	10362.1	6090
Romania	30	140	22.30	98.4	8200	4389.1	10215.4	4500
Russia	20	70	142.89	99.6	11100	39616	74420	23700
Serbia*	1	5	9.40	94.6	4400	2685.4	4729.6	1400
Singapore	10	90	4.49	92.5	28100	1847.8	4256.8	2421.8
Slovakia*	1	5	5.44	99.6	16100	1250.4	4275.2	2276
Slovenia	5	20	2.01	99.7	21600	812.3	1739.1	950
South_Africa	10	55	44.19	86.4	12000	4729	19500	3600
South_Korea	30	80	49.05	97.9	24800	23000	40000	33900
Spain	185	895	40.40	97.9	25500	17934.5	38646.8	17142.2
Sri_Lanka*	1	5	20.22	92.3	4300	1130.923	3084.845	280
Sweden	60	290	9.02	99	29800	6447	9775	6800
Switzerland	75	305	7.52	99	32300	5262.6	6275	4944.438
Taiwan	20	50	23.04	96.1	27600	13529.9	25089.6	13800
Thailand	10	15	64.63	92.6	8300	6797	27379	8420
Tunisia	10	20	10.18	74.3	8300	1203.5	3563	835
Turkey	55	195	70.41	86.5	8200	19125.2	34707.5	5500
Ukraine	5	155	46.71	99.7	7200	12142	13735	5278.1
UA_Emirates*	1	10	2.60	77.9	43400	1187.7	3683.1	1384.8
UK	265	1755	60.61	99	30300	32943	61091	37800
USA	970		298.44			268000	194479.4	
		4690		99	41800			203824.4
Uruguay*	1	10	3.43	98	9600	1000	652	680
Venezuela* Vietnam*	1	5	25.73	93.4	6100	3346.5	8421	3040
	1	5	84.40	90.3	2800	10124.9	4960	5870

The IDEAS reports data on top 20% institutions and economists for the countries other than the USA for which the percentage is 10. The data presented here are 10x for the USA and 5x for other countries, where x is the data published by the IDEAS for Aug. 2008.

•

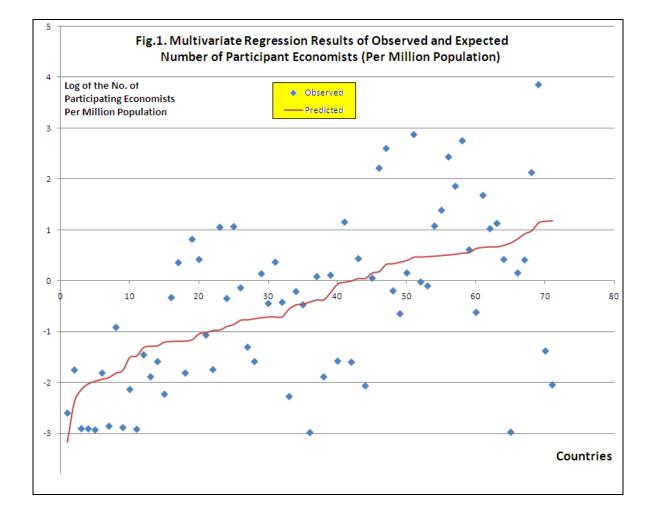
Table	e-1.B. Deflated Data	a on Economists' F	Participation	and its C	onjectured	Determinant	ts
Country	No. of Economists per Participating Institution	No. of Participating Economists per Million	Per Capita Income (in 000 US Dollars)	Literacy Rate (per cent)	No. of Telephone (per person)	No. of Cell phone (per person)	No. of Internet Users (per 00
		Population					persons)
Argentina	3.00000	1.08136	13.1	97.1	0.2179	0.3385	25.0490
Australia	5.30000	5.35354	31.9	99	0.5754	0.8133	70.0231
Austria	6.00000	1.83673	32.7	98	0.4627	0.9752	56.7566
Bangladesh	2.00000	0.23202	2.1	43.1	0.0056	0.0189	0.2036
Belgium	5.64286	3.98990	31.4	99	0.4626	0.8798	49.1374
Bolivia*	15.00000	0.17202	2.9	87.2	0.0719	0.2003	3.8936
Brazil	3.84615	2.89352	8.4	86.4	0.2253	0.3488	13.7709
Bulgaria	2.00000	0.20284	9.6	98.6	0.3692	0.6404	8.5304
Canada	6.38462	8.38384	34	99	0.6227	0.4527	63.1440
Chile	4.40000	1.14345	11.3	96.2	0.2057	0.5929	34.7088
China	2.16667	0.71507	6.8	90.9	0.2373	0.2548	8.4477
Colombia	7.00000	1.51351	7.9	92.5	0.1782	0.2386	8.2254
Croatia*	20.00000	0.20305	11.6	98.5	0.4200	0.5680	22.5597
Cyprus	4.00000	0.20492	21.5	97.6	0.5330	1.0200	37.9956
Czech_Rep Denmark	<u>11.00000</u> 4.28571	1.11111	19.5 34.6	99 99	0.3349 0.6399	1.0535	46.8958 69.0283
		1.51515				0.9481	
Ecuador*	5.00000 2.00000	0.05405 0.17331	4.3 3.9	92.5 57.7	0.1190 0.1318	0.2616 0.1780	4.6104 6.3382
Egypt			3.9				50.5915
Estonia Ethiopia*	3.00000 5.00000	0.15030 0.11710	0.9	99.8 42.7	0.3353 0.0058	0.9482	0.1511
Fiji*	10.00000	0.10672	6	93.7	0.0058	0.0024	6.7333
Finland	3.00000	0.90000	30.9	100	0.1120	0.9535	62.8133
France	4.91304	11.41414	29.9	99	0.4527	0.9333	43.0615
Germany	6.61702	15.70707	30.4	99	0.6621	0.8651	59.1127
Greece	6.00000	1.53846	22.2	97.5	0.5940	0.8707	35.5537
Hong_Kong	3.33333	0.53476	32.9	93.5	0.5467	1.1835	70.2941
Hungary	5.33333	0.80483	16.3	99.4	0.3584	0.8744	30.5570
Iceland*	5.00000	0.05051	35.6	99	0.6363	0.9690	75.1533
India	2.61538	2.85714	3.3	59.5	0.0454	0.0632	4.6195
Indonesia	3.50000	0.39818	3.6	87.9	0.0407	0.1222	7.3334
Iran	2.00000	0.12594	8.3	79.4	0.2121	0.0582	11.6468
Ireland	5.75000	1.16162	41	99	0.4970	0.9305	50.7110
Israel	4.00000	1.04822	24.6	95.4	0.4723	1.1020	47.2283
Italy	6.18605	13.48884	29.2	98.6	0.4465	1.0794	49.6615
Jamaica*	5.00000	0.05688	4.4	87.9	0.1240	0.7976	38.6857
Japan	3.05556	2.77778	31.5	99	0.4612	0.7176	67.7056
Luxembourg	5.00000	0.25000	55.6	100	0.7590	1.1361	57.0811
Malaysia	3.66667	0.62007	12.1	88.7	0.1823	0.5992	41.1714
Mexico	3.20000	0.86768	10	92.2	0.1682	0.3579	15.8171
Netherlands	7.05556	6.41414	30.5	99	0.4767	0.8974	65.5268
New_Zealand	4.60000	1.16162	25.2	99	0.4417	0.7426	78.5056
Nigeria	1.00000	0.07353	1.4	68	0.0106	0.1636	1.3421
Norway	7.50000	1.50000	42.3	100	0.4832	0.9030	68.1007
Pakistan	3.50000	1.43737	2.4	48.7	0.0272	0.0303	4.5234
Peru	3.00000	0.34208	5.9	87.7	0.0724	0.1446	16.1469
Philippines	3.00000	0.16199	5.1	92.6	0.0384	0.3681	8.7405
Poland	2.60000	0.65130	13.3	99.8	0.3233	0.7593	27.5061
Portugal	5.36364	3.16184	19.3	93.3	0.3996	0.9770	57.4210
Romania	4.66667	1.42276	8.2	98.4	0.1968	0.4580	20.1762
Russia	3.50000	0.70281	11.1	99.6	0.2772	0.5208	16.5858
Serbia*	5.00000	0.05285	4.4	94.6	0.2858	0.5033	14.8993
Singapore	9.00000	0.97297	28.1	92.5	0.4113	0.9476	53.9118
Slovakia*	5.00000	0.05020	16.1	99.6	0.2299	0.7860	41.8425
Slovenia	4.00000	0.20060	21.6	99.7	0.4041	0.8651	47.2555
South_Africa	5.50000	0.63657	12	86.4	0.1070	0.4413	8.1471
South_Korea	2.66667	0.81716	24.8	97.9	0.4690	0.8156	69.1202
Spain	4.83784	9.14198	25.5	97.9	0.4439	0.9567	42.4335

Sri_Lanka*	5.00000	0.05417	4.3	92.3	0.0559	0.1525	1.3846
Sweden	4.83333	2.92929	29.8	99	0.7150	1.0841	75.4165
Switzerland	4.06667	3.08081	32.3	99	0.6994	0.8340	65.7161
Taiwan	2.50000	0.52029	27.6	96.1	0.5873	1.0891	59.9060
Thailand	1.50000	0.16199	8.3	92.6	0.1052	0.4236	13.0277
Tunisia	2.00000	0.26918	8.3	74.3	0.1183	0.3502	8.2064
Turkey	3.54545	2.25434	8.2	86.5	0.2716	0.4929	7.8110
Ukraine	3.00000	0.15045	7.2	99.7	0.2599	0.2940	11.2995
UA_Emirates*	10.00000	0.12837	43.4	77.9	0.4563	1.4151	53.2060
UK	6.62264	17.72727	30.3	99	0.5435	1.0080	62.3668
USA	4.83505	47.37374	41.8	99	0.8980	0.6516	68.2956
Uruguay*	10.00000	0.10204	9.6	98	0.2914	0.1900	19.8139
Venezuela*	5.00000	0.05353	6.1	93.4	0.1301	0.3273	11.8148
Vietnam*	5.00000	0.05537	2.8	90.3	0.1200	0.0588	6.9547

3. The Model: Our basic objective is to find out the variables that explain variations in the economists' participation for different countries as reflected in the data thrown up by the IDEAS. For sake of brevity we designate the variables as follows:

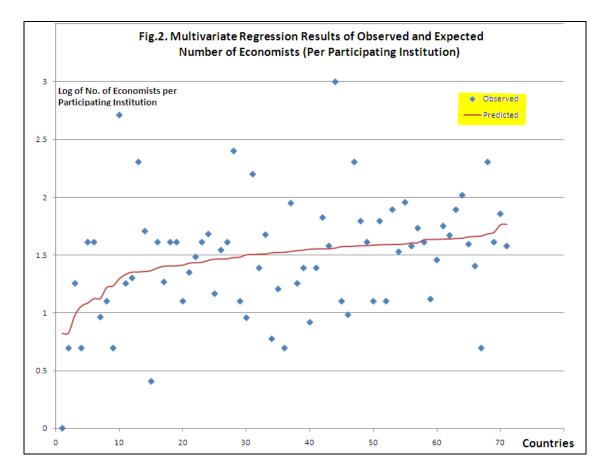
PE = No. of participating economists per million of population (of the country concerned) PI = No. of economists per participating institution (of the country concerned) PCY = Per capita income (of the country concerned) in 000 US Dollars Lit = Literacy rate of the country concerned (percent) Tel = No. of telephone connections per person of the country concerned Cel =No. of cell phones per person of the country concerned Int = No. of internet connections per 100 persons of the country concerned

We calibrate two regression models to relate these variables as follows


$ln(PE) = a_0 + a_1ln(PCY) + a_2ln(LIT) + a_3ln(TEL) + a_4ln(Cel) + a_5ln(INT) + u$	 (model-1)
$ln(PI) = b_0 + b_1 ln(PCY) + b_2 ln(LIT) + b_3 ln(TEL) + b_4 ln(Cel) + b_5 ln(INT) + v$	 (Model-2)

In the models specified above, a_j and b_j are the regression coefficients while u and v are the residual terms. In particular, a_0 and b_0 are the intercept terms. We have used the log-linear model and hence all the variables have been transformed into their natural logarithms, ln(.).

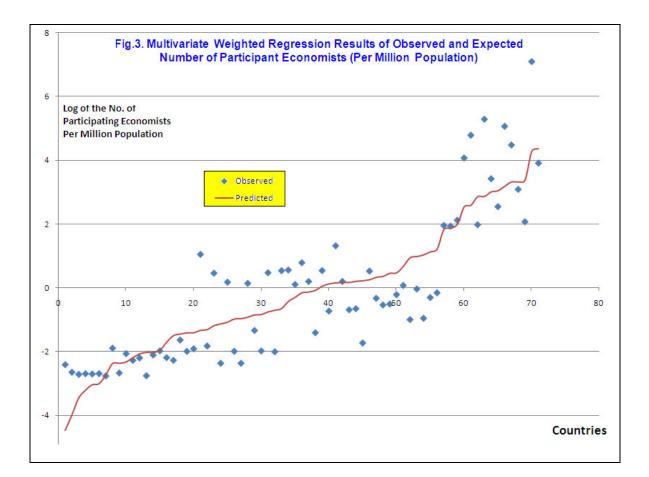
4. Preliminary Results and Discussion: In Table-3 we present the estimated regression coefficients and related statistics for model-1 (based on 71 countries listed in Table-1). We observe that only one regression coefficient (associated with PCY) is statistically significant (different from zero). Other coefficients are statistically indistinguishable from zero. Furthermore, the regression coefficient associated with PCY is greater than unity. Since in a log-linear model we may interpret a regression coefficient as a measure of elasticity, we will also conclude that income elasticity of participating economists is larger than unity or the proportionate change in the number of participating economists is larger than the proportionate change in per capita income. The scatter of observed and estimated values of ln(PE) are presented in Fig.-1.


Parameters	Beta	Standard error	Regression	Standard error	't' value	Prob.
	coefficients	of Beta	Coefficient	of Reg coefficient		
INTERCEPT	-	-	4.18631	8.60824	0.48631	0.62838
PC INCOME (PCY)	0.71222	0.27195	1.26314	0.48231	2.61897	0.01096
LITERACY (LIT)	-0.21309	0.18765	-1.94331	1.71125	-1.13561	0.26029
TELEPHONE (TEL)	0.06674	0.29782	0.10234	0.45671	0.22408	0.82340
CELL PHONE (CEL)	-0.29797	0.23865	-0.44670	0.35777	-1.24857	0.21630
INTERNET (INT)	0.18102	0.29318	0.23162	0.37514	0.61743	0.53911

We obtained R= 0.5942, R²= 0.3530, Adjusted R²= 0.3033; F(5,65)=7.095, p<0.00002, Std. Error of estimate: 1.3978.

In Table-4 (and Fig.-2) we present the results of regression analysis for PI. We observe that none of regression coefficients is statistically different from zero even at 15 percent level of significance. However, if we choose to be liberal and permit 20% level of significance, literacy rate and cell phones per person have some influence on the number of participating economists in different institutions. However, this relationship need not be taken seriously.

Table-4. Regression Summary of Dependent Variable: No. of Economists per Participating Institution (PI)								
Parameters	Beta	Standard error	andard error Regression Standard error		't' value	Prob.		
	coefficients	of Beta	Coefficient	of Reg coefficient				
INTERCEPT	-	-	-2.64282	3.05762	-0.86434	0.39058		
PC INCOME (PCY)	0.23014	0.31271	0.12608	0.17131	0.73594	0.46441		
LITERACY (LIT)	0.30720	0.21578	0.86537	0.60783	1.42371	0.15931		
TELEPHONE (TEL)	0.25097	0.34246	0.11888	0.16222	0.73284	0.46629		
CELL PHONE (CEL)	-0.37836	0.27442	-0.17521	0.12708	-1.37874	0.17270		
INTERNET (INT)	-0.06089	0.33713	-0.02407	0.13325	-0.18063	0.85722		
R= 0.3802, R ² = 0.144	6, Adjusted R ² = 0	0.0788; F(5,65)=2.19	73, p<0.06515,	Std. Error of estimate:	0.49651			



5. Consideration of Heteroskedasticity: A perusal of the scatter of observed values of PE immediately reveals that as we move away from the origin, the spread of the points becomes wider. This may be indicative of heteroskedasticity due to which the regression coefficients reported in Table-3 are (possibly) weak in significance.

To take care of the heteroskedasticity problem, we arrange the countries in an ascending order of values of $\ln(PE)$ along with its residuals (obtained from the regression analysis for which the results are presented in Table-3) and other variables (PCY, LIT, TEL, CEL and INT). We obtain the estimates of standard deviation of errors for 5 sets of observations, S₁ (for

observations # 1 through 14), S_2 (for observations # 15 through 28), S_3 (for observation # 29 through 42), S_4 (for observations # 43 through 56) and S_5 (for observations # 57 through 71). The set of S thus obtained is [1.080598, 0.798356, 0.651714, 0.777714, 0.543907]. We use the inverse of these standard deviations as weights for the respective observations. Stated more explicitly, we use $w_1=1/S_1$ for observation nos. 1 through 14; $w_2=1/S_2$ for observation nos. 15 through 28 and so on. All variables, ln(PE), ln(PCY), ..., ln(INT) are weighted accordingly. Then, we use the ordinary least squares on the transformed variables to estimate the regression coefficients.

Table-5. Weighted Regression Summary of Dependent Variable: No. of Participating Economists (PE) Parameters Beta Standard error Regression Standard error 't' value									
Beta	Standard error	Regression	Standard error	'ť value	Prob.				
coefficients	of Beta	Coefficient	of Reg coefficient						
-	-	-7.3896	0.729495	-10.1297	0.00000				
0.65823	0.23672	0.86670	0.31169	2.78070	0.00709				
0.34828	0.19002	0.55271	0.30156	1.83290	0.07140				
0.12460	0.14348	0.22601	0.26027	0.86840	0.38839				
-0.47290	0.12267	-0.85395	0.22152	-3.85490	0.00027				
0.05290	0.24322	0.05483	0.25205	0.21750	0.82848				
	0.65823 0.34828 0.12460 -0.47290	coefficients of Beta - - 0.65823 0.23672 0.34828 0.19002 0.12460 0.14348 -0.47290 0.12267	coefficients of Beta Coefficient - - -7.3896 0.65823 0.23672 0.86670 0.34828 0.19002 0.55271 0.12460 0.14348 0.22601 -0.47290 0.12267 -0.85395	coefficients of Beta Coefficient of Reg coefficient - - -7.3896 0.729495 0.65823 0.23672 0.86670 0.31169 0.34828 0.19002 0.55271 0.30156 0.12460 0.14348 0.22601 0.26027 -0.47290 0.12267 -0.85395 0.22152	coefficients of Beta Coefficient of Reg coefficient - - -7.3896 0.729495 -10.1297 0.65823 0.23672 0.86670 0.31169 2.78070 0.34828 0.19002 0.55271 0.30156 1.83290 0.12460 0.14348 0.22601 0.26027 0.86840 -0.47290 0.12267 -0.85395 0.22152 -3.85490				

The results of weighted least squares are presented in Table-5, and the weighted observed and estimated values of ln(PE) are presented in Fig.-3. We observe that now three regression coefficients are statistically significant: the one associated with PCY (although it is no longer larger than unity); the other two associated with literacy rate and the number of cell phones per person respectively. However, the coefficient associated with the cell phone is negative. This is so probably because some developed countries have lesser number of cell phones per capita (such as Canada, USA, Japan, France, New Zealand, etc) while some less developed countries have larger number of cell phones per person (such as Cyprus, Czech Republic, Iceland, UAE, etc).

Concluding Remarks: On the basis of analysis of available data we may confirm our hypothesis that level of development (as measured by per capita income and literacy rate) of a country determines the academic and professional participation of economists. It may be noted that these two variables make a larger part of the *human development index*. Therefore, it may also be concluded that the level of human development of a country determines the participation of economists in academic and professional activities (measured in terms of intellectual output), although it is equally possible to argue that academic and professional participation of the intelligentsia determines the level of development of a country and the participation of economists is only a proxy to participation of the intelligentsia in influencing the socio-economic dynamics. For deciding the arrow of causation we need long time series data.

The findings of this study are, however, based on a limited dataset. It should be borne in mind that the rankings by RePEc and IDEAS are based only on some 2039 series, 762 journals, 1281 institutions and 17450 registered authors that have participated in the program. Additionally, there are 5605 registered participants in the program who have not claimed any authorship. There remain a large number of authors/economists whose works do not form a part of the RePEc/IDEAS. For example, the Social Science Network (SSRN) has 98.6 thousand registered authors, many of whom directly or indirectly write on economics (or a topic closely associated with it). Additionally, many journals do not make a part of the IDEAS program. Thus, the participation in RePEc/IDEAS can be considered only as a sample drawn from a very large universe of economists.

There may be several reasons of lesser participation of economists in the less developed countries in the publication-oriented academic and professional activities. Most of the journals that are registered with the RePEc/IDEAS are controlled (academically as well as managerially) by the economists of the developed countries. It is not true that those journals ore unbiased in

selecting the articles for publication. Referees also need not be unbiased (Laband, 1985; Laband and Piette, 1994; Frey, 2002). Thus, economists from the less developed countries may be at odds either on account of technicalities or the relevance of topics they work on. Although many journals are published in less developed countries also, but lack of professionalism and prevalence of *academic infirmities* as well as favoritism of editors of those journals keep them far off the international recognition and hence limit their wider circulation. In turn, the articles published in such journals are less known/cited and have little impact factor. Since most of the authors publish their articles in such local journals, the recognition of their work is jeopardized.

It may be reiterated that unlike in the natural sciences (physics, chemistry, zoology, botany, etc) the empirical findings in the social sciences (such as economics, sociology, etc) do not have any universal validity. A paper based on the findings of a study regarding the economic aspects of people in a small region or district of an underdeveloped country may be of a great local interest, but, unless it has some theoretical significance, it will not attract the attention of the economists worldwide. Therefore, publication of such works in the international journals will be more difficult as the journals care for the expected readership of the articles published therein. In a lighter vein it can be said: *if you work on local data, you are a local-level economist; if you work on the national data, you are a national-level economist; if you work on the international data, you are a world class economist!*

Additionally, unlike natural scientists, social scientists cannot generate data that may have an international appeal. The statistics at the national level do have an international appeal but these statistics are generated by some organizations at the national level. Economists working in such organizations often monopolize on those data and publish the findings based on them before others can have any access to the said statistics. It is difficult to disentangle the *rental earnings* (of reputation of such economists who feed on the access-constrained monopoly over the data) from their *productivity-based or innovation-based earnings*. By the time the less-privileged economists would gain an access to such dataset, it would have already become a *marginal land*.

Further, academic economists in less developed countries are also less integrated with the industries and the organizations that determine the economic policies in those countries. This lack of integration is one of the factors that determine economists' involvement in the academic and professional activities leading to publication in journals.

Finally, it is also true that the academic competence of economists in the less developed counties, in general, is deficient. They are not able to motivate and supervise the students

competently, which is reflected in the research dissertations submitted in different universities. There is no effort on the researchers' part either to correlate their empirical findings to the existing theories or to formulate new theories to explain those findings. Occasionally, when a few researchers come up as prospective good economists, the brain drain takes its toll. Most of them are lost in the universities of the developed countries. Some of those who return back to their native countries bring in with them much ado and vanity rather than the zeal and dedication to develop the institutions in their homeland. They continue to be subservient to the mainstream economics in the developed economies. New developments in economics are not easily incorporated into the syllabi of undergraduate and postgraduate teaching or research programs. Academic institutions have no strict and effective policies to stimulate economists working therein to write and publish. Those institutions present themselves so poorly that many of them have no presence on the World Wide Web, and if some of them have their presence then their websites amply display their deplorable condition and casual concern (Mishra, 2008). These deficiencies ultimately speak on participation of the economists of less developed countries in academic and professional endeavors.

References

Feldman, M. P. (2006) "Academic entrepreneurs: social learning and participation in university technology transfer", *Proceedings, Federal Reserve Bank of Cleveland*, Cleveland.

Frey, B. S. (2003) "Publishing as Prostitution? Choosing Between One's Own Ideas and Academic Failure", *Public Choice*, 116: 205-223. <u>http://www.iew.unizh.ch/wp/iewwp117.pdf</u>

Laband, N. (1985) "Publishing Favoritism: A Critique of Department Rankings Based on Quantitative Publishing Performance", *Southern Economic Journal*, 52: 510-515.

Laband, D. N. and Piette, M. J. (1994) "Favoritism versus Search for Good Papers: Empirical Evidence Regarding the Behavior of Journal Editors", *J. of Political Economy*, 102 (1): 194-203.

Mishra, S. K. (2008) "Possibilities of Quality Enhancement in Higher Education by Intensive Use of Information Technology", *SSRN*: http://ssrn.com/abstract=1131824

Tylor, S. W., Fender, B. F. and Burke, K. G. (2006) "Unraveling the Academic Productivity of Economists: The Opportunity Costs of Teaching and Service", *Southern Economic Journal*, 72(4): 846-859.

Zimmermann, C. (2007) "Academic Rankings with RePEc", <u>http://www.econ.uconn.edu/</u> working/2007-36.pdf