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Abstract 
Leading indicators based on correlations with reference cycles are regularly used to 
monitor the economy. It would be useful if we could have a quantitative measure of the 
risk associated with leading indicators forecasts. In this paper, we outline a methodology 
to develop an index for quantifying the risk of the economy actually ending up in a boom 
when the indicator/index predicts recession and vice-a-versa. These measures will be 
particularly useful for analyzing turning points, where leading indicator forecasts are at 
the greatest risk of going wrong. The paper carries out one exercise as an illustration and 
demonstrates the close correspondence between the risk function (determined in advance) 
and the turning points of the business cycle.  
 

 
Introduction:   
 

Leading indicators are regularly constructed in order to monitor the state of the 

economy and predict booms as well as recessions in advance. Typically, leading 

indicators are obtained by examining the cross-correlation between a reference cycle and 

lags of a number of candidate leading indicators. The lags of the candidate series with the 

highest cross-correlations (typically exceeding 0.5) are chosen, standardized for mean 

and variance and then aggregated into a leading indicator. This composite leading 

indicator index is then used to track the performance of the economy. Though a number 

of other methods to develop leading indicators based on coherence and mean delay and 

turning point analysis have been proposed, the cross-correlations methodology remains 

popular. 1
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Measures have also been suggested for assessing the quality of a leading 

indicator, particularly its ability to capture turning points.  A popular measure is given by 

the Quadratic Probability Score (Dieboldt and Rudenbusch (1999)). The Quadratic 

Probability Score (QPS) of each indicator may be used to evaluate the quality of the 

indicator. The QPS is defined as 
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Where  ( 1  for a turning point, zero otherwise) denotes the predicted outcomes 

from a indicator and  

tP tP =

tR  ( 1 for a turning point, zero otherwise) is the observed 

realization in the reference series. N is the total number of sample observations. By 

construction, the value of QPS ranges between zero and two, with zero indicating perfect 

prediction and two indicating no single correct signal from an indicator. [H

tR =

1, H2] is the 

prediction window, which is used to determine whether a predicted outcome represents a 

correct signal or a false one when it takes the value of one, and whether or not it has 

missed a turning point when taking the value of zero. Such an indicator is useful in 

evaluating the quality of an indicator in an ex-post sense. However, it is not particularly 

useful for evaluating the efficacy of an indicator to predict turning points in advance. 

 

    In this paper, we develop an alternative methodology for assessing the quality 

of an indicator and measuring the risk of an incorrect prediction of the state of the 

economy. This methodology is outlined in section 1. 

 



 

Section 1 

Let us say that the economy is in state  when it is in a recession and state  

when it is in a boom. By the risk associated with a given component of the leading 

indicator, we learn the risk of the economy actually turning out to be in state  when the 

leading indicator indicates  and vice-a-versa. We will measure this risk as a conditional 

probability, conditional on a given value of the realization of the leading indicator 

component. 

1S 2S

2S
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More formally, suppose t ix −  is a component of the leading indicator index, with 

the highest correlation at lag i with the reference cycle, . Suppose the cross correlation 

indicated here is positive. We would then expect the following: 

ty

 

1( / ) ( /t t i t tP y S x P y S x− −= > = 2 )i  Whenever t ix −  is in state   1S

and    

1( / ) ( /t t i t tP y S x P y S x− −= < = 2 )i  Whenever t ix −  is in state . 2S

                                                                                                        (Equation 1) 

 

Since t ix −  is detrended with mean zero, we will say t ix −  is in state  if 1S 0t ix − ≤  

and in  otherwise.  2S

Given this, from Bayes’ rule, we have 
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                                                                                                                     (Equation 2) 
 
(Equation 1) above implies the condition 
 
 

1 2( / ) ( / )t t i t t i t iP y S x P y S x x− −= > = ∀   
 
And  
 

1 2( / ) ( / )t t i t t i t iP y S x P y S x x− −= < = ∀  
 
 

The risk of predicting the wrong state i-periods later on the basis of the observed 

realization of tx  can then be quantified as 2( /tP y S x )t i−=  when tx   and 

 when . These numbers can be read off straight away from the 

relevant conditional density functions. Suppose we have observed

0≤

1( /tP y S x −= )t i 0tx >

tx 0≤ . Going by 

equation 1,  is more likely relative to  and hence we will predict . However, the 

conditional probability of conditional on the observed value of  need not be 

zero. Hence, to capture this risk, we develop a measure of this risk, which is simply 1-  

where  .  

1S 2S 1S

2S 0tx ≤

1P

1P = 1( /t tP y S x −= )i

i

It is straightforward to generalize this to the case of n independent indicators. 

Suppose we have iI x=  is the observed value for the ith indicator, 1,i n= . In that case, 

the risk of prediction of   is given as follows 1S



  

R (n) = 1 -                                                       (Equation 3) /iP n∑

 

If all the predictions are such that the conditional probability of conditional on 

the observed value of the indicator is zero for all the indicators, then for each of the 

indicator and hence the measure of risk equals zero. On the other hand, if the conditional 

probability of given the observed value of the indicator is 1 for each of the indicator, 

then  and hence, the value of risk measure is 1. Hence, we have a measure of risk 

that lies between 0 and 1, and can be used to evaluate the risk associated with a leading 

indicator forecast given various observed values of the indicator components. 

2S

1iP =

2S

0iP = ∀i

 

In the next section, we present an example of our methodology for a simple 

leading indicator based on three component time series. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

SECTION 2 
 

In this section, we use the monthly index of industrial production (IIP) as the 

reference series. We have used monthly data on the IIP from April 1998 to March 2005 

(1993-94=100). The leading indicator index comprises of aggregate deposits, term 

deposits and electricity production components of the index of industrial production 

(1993-94=100).After deseasonalising the IIP data, the partial autocorrelations and 

autocorrelations were examined to ensure that the data did not indicate any further 

seasonal fluctuation. As no significant spikes were detected at lag 12, the data were then 

detrended using the Hodrick–Prescott filter. The Hodrick-Prescott λ  was set equal to 

129600 (Ravn and Uhlig(2002)). The data were deseasonalised using a Census X-11 

method. After detrending, five month centered moving average was computed to smooth 

the data. An identical treatment was given to components of the index of leading 

indicator. Cross correlations between the detrended IIP and the leading indicator index 

were calculated for various (1 to 24) lags of the latter and the most significant 

correlations were found as under  

Table: 1 

Leading Indicator Highest correlation Corresponding lag number 

Term Deposits 0.82158 11 

Electricity -0.69392 19 

Aggregate Deposits 0.78081 23 

  



For simplicity, we say that IIP is in state  if IIP is below its mean (which is 

zero) and that IIP is in state when IIP is above its mean. Ideally, we would have liked 

to identify  and  respectively with a recession and boom, but that would have 

resulted in too few data points for our analysis. This does not change the logic of our 

exercise and hence we have ignored this obvious limitation.  

1S

2S

1S 2S

 

The risk measure that we have outlined requires us to calculate the conditional 

probabilities mentioned in Equation 1. Those probabilities can be calculated using Bayes’ 

rule as in Equation 2. Suppose we want to estimate 
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We will then be required to estimate  1 2( / ), ( / ), ( )t i t t i tP x y S P x y S P S− −= =  

and .  can simply be estimated as the relative frequency of the times  is in 

state .The  and 

2( )P S ( )iP S ty

iS 1( /t i tP x y S− = ) )2( /t i tP x y S− = can be separately estimated non-

parametrically. (Chauvet and Hamilton (2006)). We explain the procedure below: 

Step 1: Obtain the non-parametric density function of t ix −  when the economy is in 

state , i,e, the values of 1S t ix −  when  was below zero. The non-parametric Kernel 

density estimator (Rosenblatt (1956)) is given as follows:  

ty
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Where K(.) is an appropriately chosen Kernel density estimator. (For a description 

of the various Kernel density estimators that can be used, see Cameron and Trivedi 

(2005, page.300)). We have used the Epanechnikov (or the quadratic) Kernel density 

estimator where: 

2(.) (3/ 4)*(1 ) ( 1)K z I= − × z <   and where h is the bandwidth. 

and ( 1I z < )  is an indicator function that takes value 1 if the absolute value of z is less 

than one and is zero otherwise. 

 

The Epanechnikov kernel has an advantage over other kernels (though a slight 

one) in that the Epanechnikov kernel minimizes the mean integrated square error 

(Cameron and Trivedi (2005), page 303).  

 

The choice of the bandwidth is critical in order to ensure the consistency of the 

estimates. Kernel density estimators are biased in small samples, but can be shown to be 

point-wise consistent at a particular point 0x x=  if the bias as well as the variance 

disappear. This is ensured if  and . In practice, one uses the Silverman’s 

plug-in estimate given by 

h →∞ 0nh →

0.2* 1.3643 min( , /1.349)h N s iqrδ −=  

 

Where s is the sample standard deviation, IQR refers to the interquartile range and δ = 

1.7188. (Cameron and Trivedi (2005), page 300). 

 



In practice, it might be necessary to parameterize the estimated density, which can 

be achieved by fitting an appropriate distribution which can be determined by visual 

inspection of the shape of the non-parametric density (Chauvet and Hamilton (2006)). 

The analysis can be confirmed by use of a non-parametric goodness of fit test like the 

Kolmogrov-Smirnov test (Rohatgi (2003)). 

Figure 1, 2 and 3 presents the estimated non-parametric density function for the 

three components of the leading indicator index 

1( /t i tP x y S− = ) . 
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Figure 1.a (Density Function of Term Deposits in state S1) 

 

             Similarly, Figure 1.b plots  2( /t i tP x y S− )=  for term deposits 

 

 



 

 

 

 
Density Function in state S2 
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.Figure 1.b (Density Function of Term Deposits in state S2) 

 

Similarly, we have state S1 and state S2 for electricity production as below: 
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 Figure 2.a (Density function of Electricity production in state S1) 



 

 

 

 

 
Density function in state S2 
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Figure 2.b (Density Function of Electricity production in state S2) 

 

And in case of aggregate deposits we have diagrams as given below: 
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Figure 3.a (Density Function of Aggregate Deposits in state S1) 
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Figure 3.b (Density Function of Aggregate Deposits in state S2) 

 

Having obtained these two density function of each component, we can then 

proceed to combine them using Bayes’ rule, after suitable parameterization. We found 



that the normal density function fits the data well in each of the two states for the three 

indicators. The table below gives the values of the Kolmogrov-Smirnov test statistic to 

judge the goodness of fit for the normal density function F(x) and the observed density 

function F0(x) (Rohatgi(2003)).  

 

H0 :  F(x) = F0(x) 

1 0: ( )H F x F≠ (x) 

 

 

 

Table: 2 

Leading 

Indicator 

State Critical value Computed value Decision 

Term deposits S1 

S2 

0.17 

0.177 

0.1249 

0.1459 

Accept null 

Accept null 

Electricity S1 

S2 

0.172 

0.193 

0.0146 

0.0690 

Accept null 

Accept null 

Aggregate 

Deposits 

S1 

S2 

 

0.179 

0.200 

0.0282 

0.0216 

Accept null 

Accept null 

Below, we combine the two density functions by applying Bayes’ rule as in Equation 2 in 

section 1 for each of the three components of the leading indicator index. 
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Figure 4: Term Deposits 

 

In figure 4, the curve sloping from the left to the right gives 1( /t tP y S x )i−= for 

various values of term deposits lagged 11 periods i.e. xt-11 so as to correspond with the 

highest correlation of IIP while the curve sloping down from the right to the left 

gives .  2( /t tP y S x −= )i
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Figure 5: Electricity production 

 

In figure 5, the curve sloping from the right to the left gives 1( /t tP y S x )i−= for 

various values of electricity lagged 19 periods xt-19 while the curve sloping down from 

the left to the right gives . Here we must note that electricity has a high 

correlation of 0.69 with IIP but it is negative. 

2( /tP y S x −= )t i
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Figure 6: Aggregate deposits 

 

In figure 6, the curve sloping from the left to the right gives 1( /t tP y S x )i−= for 

various values of xt-23 while the curve sloping down from the right to the left 

gives . 2( /t tP y S x −= )i

)i

Given these curves, suppose we have a realization of xt-i < 0. In that case, the 

probability of occurring exceeds the probability of  being realized at t, and hence 

the prediction would be . However, the probability of actually being realized at t can 

now be read off from the curve measuring

1S 2S

1S 2S

2( /t tP y S x −= . We must take note here that 

in case of electricity, since it has a negative correlation with IIP we would expect the 

other state to occur. 

This process can easily be generalized to a leading indicator index that contains 

more  indicators, where as has been pointed out above, risk can be measured as a function 

of the number of leading indicators: 



R(x,n) =  1 -   where ( ) /i iP x n∑ ix  is the observed value of the ith indicator.  

 

Below, we plot the risk associated with prediction of  using the index with 

components-aggregate deposits, term deposits and electricity as a leading indicator, as an 

illustration. We expect the risk of an actual realization of   when the prediction on the 

basis of the conditional probabilities is  to go up as one approaches a turning point 

when the economy shifts from  to . The method outlined in this chapter allows us to 

measure this risk and hence obtain an indication of a turning point in advance. 

1S

2S

1S

1S 2S
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Figure 7 

The above graph is that of detrended deseasonalised IIP which has been regressed 

on IIP with a lag of 12 periods to remove the seasonal fluctuations. The residuals thus 

obtained were smoothed using five period centered moving averages.  This has led to a 

loss of 14 observations.  
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Figure 8: Risk function 

 

The close correspondence between our risk measure and the peaks of IIP can be 

seen from above. The turning points in IIP can be captured by the peaks in the risk 

function. A number of features of the risk function are worth noting: 

• From observation number 30, the index of industrial production shows a 

sustained rise to observation number 38. The IIP then flattens out till 

observation number 43, and again commences to rise till point 45. The risk 

function  peaks at 27 and then is moving downward till it reaches point 43. 

In the majority of this duration, IIP has been moving upwards, indicating 

an expansion. During this period of stable expansion, the risk function has 

been moving down steadily. Though the dates do not match perfectly, this 

correspondence is encouraging.  

• In the expansion subphase, IIP flattens out between observation numbers  

38 and 44. During this phase, the risk function also goes up. After a small 

spurt, IIP expansion starts to slow down. During this phase, the risk 

function also rises.  

 



• Between observations 19 and 21 too, IIP flattens out. Our risk function is 

 

It is evident that the number of observations are far too few in order to reliably 

evaluat

expansion, the value of the 

b) , or turning around, the risk 

Given that the risk function for our set of indicators can be computed atleast 11 

Conclusion 

In this paper, we have outli l method based on non-parametric 

density

increasing in this phase.  

e our risk function. However, from the limited observations that we at our 

disposal, the following conclusions can be tentatively drawn: 

a) Whenever the economy is in a  sustained  

risk function drops. This is to be anticipated, since the leading indicator 

generates a strong signal in this period. 

Whenever the expansion is faltering 

function rises. 

months in advance ( or more realistically, 9 months in advance given a two month 

lag for the data to become available), we can use this risk function in conjunction 

with the signals generated from the leading indicator index in order to judge the 

strength of the signal emitted by the leading indicator.     

 

 

ned a statistica

 estimation of quantifying the risks involved with predictions using leading 

indicators. Though we have chosen three components to define the leading indicator 

index for illustrative purposes, our method can easily be generalized to a more 



comprehensive index of leading indicators. This methodology can also be used then to 

indicate possibility of turning points.  
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