
ISSN No. 2454 - 1427 

CDE 
May 2018 

On Existence and Properties of Pure-strategy Equilibria under 
Contests 

    Sakshi Gupta 
Email: sakshi.gupta@columbia.edu

    Department of Economics,  
Columbia University, New York 

Ram Singh 
Email: ramsingh@econdse.org 
Department of Economics  
Delhi School of Economics 

  Working Paper No. 288 
    http://www.cdedse.org/pdf/work288.pdf 

CENTRE FOR DEVELOPMENT ECONOMICS 
DELHI SCHOOL OF ECONOMICS 

DELHI 110007 



On Existence and Properties of Pure-strategy
Equilibria under Contests

Sakshi Gupta∗ and Ram Singh†

Abstract

The use of ‘ratio form’ probability of success function dominates the existing
literature on contests. Very few works have focused on the ’difference form’
functions, notwithstanding their robust theoretical foundations and intuitive
appeal in several contexts. Assuming the cost of efforts to be linear, Hirshleifer
(1989) and Baik (1998) have argued that under the difference form contests,
there is no interior pure strategy Nash equilibrium. In contrast, existence of
interior pure strategy Nash equilibrium is well known for the ratio form contest
functions. In this paper we use strictly convex cost functions and demonstrate
existence of pure strategy Nash equilibrium for the difference form. Moreover,
we show that several properties of equilibria and the comparative statics for
the difference form closely resemble those for the ratio form. However, unlike
the ratio form, under a difference form contest the existence of pure strategy
Nash equilibrium is sensitive to the value of the prize.

1 Introduction

In several contexts, economic agents compete with one another for a ‘prize’. For
example, employees compete for promotion and higher wage. Sport persons compete
for awards. Firms and advertising agencies compete for the market share. The
research and development firms compete for patents. The litigants compete for a
favorable court award. Politicians contest elections for various offices etc.

Given their relevance to several contexts, the literature on contests is extensive. Var-
ious types of contests have been modeled and thoroughly examined in the literature.
For instances, Hirshleifer (1989) models battles/wars; Snyder (1989), Hillman & Riley
(1989), Coughlin (1990), Baron (1994), Skaperdas & Grofman (1995) study political
and electoral competition; litigation contests are modeled in Robson & Skaperdas
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(2008), Wärneryd (2000); patent races and innovation tournaments are studied in
Loury (1979), Reinganum (1989), Nti (1997), Fullerton & McAfee (1999), Baye &
Hoppe (2003); Szymanski (2003) examines sports, etc.

Formally, a contest is characterized by the choice of the probability of success function
along with the cost of effort functions for the players. The probability of success for
a player depends on levels of efforts put in by different contestants. Depending on
the context, effort could mean the action taken or the time spent at talk. It could
also mean the amount of money spent or investment made by an agent. A contest
can be asymmetric in terms of the relative ‘strength’ of the players - a player might
have natural advantages over the others. In addition, the probability of success may
depend on the nature of underlying uncertainty, which can vary from context to
context.

The most commonly used probability of success function is known as the Tullock or
the ratio form function. As the name indicates, under the ratio form, probability of
win for a player is the ratio of effort provided by her, divided by the total supply
of efforts across all players.1 The ratio form contest probability functions (CPFs)
are used to study various types of rent-seeking contests, innovation tournaments,
and patent-races. Competition games in these situations have been shown to be
strategically equivalent to the ratio form contests. ( SeeBaye & Hoppe (2003)).

The other form of CPF used in the literature is called the difference form. Under a
difference form CPF, winning probabilities are functions of the difference in the level of
efforts.(See Hirshleifer (1989), Baik (1998),Che & Gale (2000) etc.) This probability
of contest function has been shown to be natural choice for model settings like intra-
household bargaining over allocation of time and other resources, wars/battles, etc.
(See Gersbach & Haller (2009), Hirshleifer (1989)). A difference form is also of interest
when there is lack of commitment on the part of the contest designer to a specific
CPF, once contenders have already exerted their efforts2.

The ratio form as well as the difference form CPFs have strong theoretical foundations.
Both classes have different but equally appealing axiomatic foundations3. Nonethe-
less, the literature on contests is dominated by the use of the ratio form CPFs. For
the ratio forms, the literature has extensively examined properties of the equilibria
under symmetric as well as asymmetric information structures. Several works have
demonstrated the existence of an interior pure strategy Nash equilibrium for the ratio
form under reasonable assumptions and different information structures.4 Existence

1Skaperdas (1996), Baye et al. (1994), Cornes & Hartley (2005), Snyder (1989), Szymanski &
Valletti (2005), Schweinzer & Segev (2012) etc.

2Corchón & Dahm (2010)
3See the next section
4Baye et al. (1994), Szidarovszky & Okuguchi (1997), Cornes & Hartley (2005), Wärneryd (2003)

2



of a pure strategy equilibria under the ratio form CPFs has enabled researchers to
study their properties and comparative statics. Indeed, a large number of works have
analyzed the comparative statics for the ratio form, to examine effects of starting
advantage, value of prize and information structure on equilibrium effort levels and
pay-offs for the agents.

In contrast, very few works exist on the difference form functions. Assuming the cost
of efforts to be linear, Hirshleifer (1989) and Baik (1998) have shown that under the
difference form CPFs there does not exist an interior pure strategy Nash equilibrium5.
It seems that the existing claims about the nature of equilibrium under the difference
form CPFs is a reason why these functions are under studied, even though they have
equally robust theoretical foundations and plausible intuitive appeal.

The question is whether the non-existence of an interior pure strategy Nash equilib-
rium under difference form functions is due to some intrinsic feature of these CPFs;
or, it is on account of the assumption that costs are linear. We relax the assumption
of linear cost and show that when costs are strictly convex, ‘impossibility theorem’ in
Hirshleifer (1989) and Baik (1998) breaks down. We demonstrate existence of interior
pure strategy Nash equilibrium for various types of difference form CPFs.

In this paper, we assume strictly convex costs of efforts. The assumption of strictly
convex costs is not only an analytical possibility, but is mainstream. A large number
of economic models, including contests and tournaments make this assumption e.g.
Holmstrom (1982), Grund & Sliwka (2005), Moldovanu & Sela (2006), Demougin
& Fluet (2003), Harbring & Irlenbusch (2003), Cornes & Hartley (2012), Esteban &
Sákovics (2003), Einy et al. (2013), Ewerhart & Quartieri (2015) etc. St-Pierre (2016)
show the importance of convexity in the cost function on aggregate performance in
a tournament model. Moldovanu & Sela (2001) consider convex cost functions most
important from application point of view as it can make several positive prizes optimal
unlike linear or concave costs in a contest with multiple non identical prizes. Indeed,
in several contexts, the assumption of strictly convex costs is more plausible than the
linear costs. For instance, when efforts are non-monetary, say in terms of time spent
as described in Cubel (2014).

Further, we show that the properties of the equilibria and the comparative statics for
the difference form CPFs closely resemble those for the ratio form. However, there
are a few interesting differences as well. We show that when contests are asymmetric
with respect to innate ability or productivity, then under the difference form, the
existence of pure strategy Nash equilibrium is sensitive to the size of the prize.

The rest of the article is organized as follows. In section 2, we review the existing

etc.
5Also see Che & Gale (2000), Hwang (2009)

3



literature. In section 3 we describe the structure of the model and introduce several
classes of contest probability functions(CPFs) we study. In section 4 we examine
existence of equilibria for various classes of CPFs and also their properties. Section 5
analysis the comparative static results for difference form CPFs and compares them
to the ratio form. Finally in section 6, we present conclusions.

2 Contest Functions: Literature Review

A contest is characterized by the choice of the contest probability function (CPF)
along with the cost of effort functions for the players. A CPF, commonly known as
contest success function, maps agents’ efforts into their probabilities of win.
The most commonly used CPF is the logit form. Some of the many articles that
work with logit form include Dixit (1987), Snyder (1989), Hurley & Shogren (1998),
Szidarovszky & Okuguchi (1997), Dahm et al. (2005) etc. Logit form itself can take
several forms. The one most extensively used is the Tullock or the ratio form function.
For two-player contests, a generic version of the ratio form function defines probability
of win for the first player, p1(.) as:

p1(.) =
θ1e

m
1

θ1em1 + θ2em2

where m > 0, e1, e2 are the efforts put in by the players, θ1 and θ2 are parameters that
determine relative advantages of the players. The probability of win for the second
player is p2(.) = 1− p1(.). The existing literature has used special cases of the ratio
form as defined above. Apart from few exceptions, it is assumed that m = 1 e.g.
Snyder (1989), Nitzan (1991), Paul & Wilhite (1991), Caruso (2006), Caruso (2007),
Fu & Lu (2012), Wärneryd (2003), Fey (2008). The ratio form CPFs are used to
study various types of the rent-seeking and lobbying contests (Konrad (2000)), sports
tournaments (Szymanski (2003), Hoehn & Szymanski (2010)), electoral competitions
(Snyder (1989)), political conflicts and power struggles (Hirshleifer (1991), Hirshleifer
(1995), Anderton (2000)), innovation tournaments and patent-race (Baye & Hoppe
(2003)). Competition games in these situations have been shown to be strategically
equivalent to the ratio form contests by Baye & Hoppe (2003). This CPF is also used
in various experimental group contest games (Abbink et al. (2010), Ahn et al. (2011),
Abbink et al. (2012) ).

The other form of CPF used in the literature is called the difference form. Under a
difference form CPF, winning probabilities are functions of the difference in the level
of efforts. Under a typical difference form, p1(.) is given by:

p1(.) =
exp(me1)

exp(me1) + exp(me2)
≡ 1

1 + exp(me2 −me1)
, (1)

where m > 0 and p2(.) = 1−p1(.). See e.g. the CPFs used in Hirshleifer (1989), Baik
(1998), Che & Gale (2000), Polishchuk & Tonis (2013), Anderton (2000), Gersbach &

4



Haller (2009), etc. This type of CSF also culminates from using a mechanism design
approach when contestants have private information about value of prize (Polishchuk
& Tonis (2013)).6

There exists yet another form of the difference form CPFs, which defines

p1(.) = f(d) (2)

where d = me1 − e2, m > 0, and f(d) is continuous and twice differentiable such
that f ′(d) > 0. This CPF is described by Baik (1998). Besides, there are some
other forms of contest success functions. However, these functions have properties
starkly different from the CPFs we want to analyze in this article. For instance, see
Skaperdas et al. (2013); Beviá & Corchón (2015).

The literature on this subject shows that the above described CPFs have micro-
founded. Corchón & Dahm (2010) for example, suggest that the general two player
logit form can be rationalized if the decision maker has multiplicative pair of utility
functions. He uses these utility functions to decide the winner given state of nature
known only to him. In Dahm et al. (2005), logit form emerges as an outcome of a
model setting where players are uncertain about the type of the contest administrator.

The existing literature on the subject also provides stochastic foundations underlying
the above mentioned CPFs. For instance, the ratio form CPFs emerges when the
error term, ε, follows inverse exponential distributions as seen in Jia (2008). Jia et al.
(2013) argues that the approach in Jia (2008) can be extended to provide stochastic
foundations for symmetric and asymmetric versions of general logit form as well.
Similarly, McFadden et al. (1973) show that difference form functions are derived
when ε follows extreme value distribution.

Besides, these functions also have axiomatic foundations as shown in Skaperdas (1996)
for logit and ratio forms, Clark & Riis (1998) for asymmetric ratio forms etc. Ax-
iomatic route to the foundations of logit, ratio and difference forms are also provided
in Ewerhart (2015). The ratio and difference form functions have different but equally
appealing axiomatic foundations as seen in Jia et al. (2013). Skaperdas (1996) and
Jia et al. (2013) argue for instance that the ratio form can be derived from class of
functions satisfying homogeneity property, i.e., pi(cei, ce−i) = pi(ei, e−i) ∀ c > 0. The
difference form functions exhibit an equally interesting property: for each player the
probability of winning does not change if the level of effort of each player increases
by a constant amount. Formally, for CPF defined in (1), we have pi(ei + c, e−i + c) =
pi(ei, e−i), ∀ c such that ej + c > 0.

6Even literature from empirical IO makes use of the difference form function as demand function
emerging from stochastic utility functions with error term following extreme value distribution.
However, the problem considered in these articles is different from what we deal with here.
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Nonetheless, the literature contests are dominated by the use of the ratio form CPFs.
For the ratio forms, the literature has extensively examined properties of the equilibria
under symmetric as well as asymmetric information structures e.g. Baye et al. (1994),
Szidarovszky & Okuguchi (1997), Cornes & Hartley (2005), Chowdhury & Sheremeta
(2011), Wärneryd (2003). Besides, a large number of works like Nti (1999), Baik
(2004), Snyder (1989), Fey (2008) have analyzed the comparative statics for the ratio
form, to examine effects of starting advantage, value of prize and information structure
on equilibrium effort levels and pay-offs for the agents. In contrast, very few works
exist on the difference form functions. See Hirshleifer (1989), Baik (1998), Che & Gale
(2000), Hwang (2009), and Baye et al. (1994). To our knowledge, there is no study
on the comparative statistics for the class of difference form function we consider in
the article including (1). In this paper, we fill this gap in the literature.

The question is whether the non-existence of an interior pure strategy Nash equilib-
rium under difference form functions is due to some intrinsic feature of these CPFs; or,
it is on account of the assumption that costs are linear. We show that when costs are
strictly convex, ‘impossibility theorem’ in Hirshleifer (1989) and Baik (1998) break
down. We demonstrate existence of an interior pure strategy Nash equilibrium for
two different classes of difference form CPFs, including the functions defined in (1)
and (2).

3 Model

Two players compete for a prize, which is a random variable denoted by V . The
random variable V is drawn from support [v, v̄]. Let any particular realization of
V be denoted by v and let F (v) and f(v), respectively, be the distribution and the
density functions of V .

A contest can be modeled as a comparison of the ‘outputs’ produced by the competing
agents; agent with the highest output wins the prize. In general, the output depends
on the effort by the agent and a noise term. Let, Qi = qi(ei, εi) be the output
production function for agent i, where ei is the effort put in by player and εi is the
relevant error term for i = 1, 2.7 The Probability of win for the agent i, pi(.), is given
by pi(ei, ej) = Pr[Qi > Qj] = Pr[qi(ei, εi) > qj(ej, εj)], where i, j = 1, 2 and i �= j.
Clearly, pi(.) is a function of the efforts provided by the two players along with the
parameters of the distribution of the two error terms. In particular, depending on
qi(.) and distribution of εi, pi() can take several forms like the ratio form and the
difference form as described in the previous section8.

For simplicity, let p1(.) = p(.) and therefore p2(.) = 1 − p(.). The general form

7The term ‘outputs’ can stand for the actual output, the quantity of sale, evidence, etc.
8See Konrad et al. (2009), and Jia et al. (2013)
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logit probability of success function is given by: p(.) = θ1φ1(e1)/[θ1φ1(e1)+ θ2φ2(e2)],
where θi > 0, φi(ei) ≥ 0, φ

′
i(ei) > 0, i = 1, 2 and φ1(e1) > 0 or φ2(e2) > 0. If

φ1(e1) = φ2(e2) = 0 then p(.) ∈ (0, 1). This CPF can be re-written as: p(.) =
θφ1(e1)/[θφ1(e1) + φ2(e2)], where θ = θ1/θ2. Clearly, θ > 0. Note that when φ1(e1) =
φ2(e2), i.e., when the two players provide same amount of output, p(.) = p1(.) ≶ 1/2
iff θ1 ≶ θ2, i.e., θ ≶ 1. Thus θ �= 1 is a source of asymmetry in the contest. Specifically,
θ is a measure of ’natural advantage’ of player 1 over 2.

One can think of φi(ei) as output/performance/evidence provided by party i. It can
also be interpreted as the impact function of player i. A completely different inter-
pretation for φi(.) comes from the literature on micro-foundations which interprets
it as a component of the contest administrators utility function based on which he
decides the winner. In such setups φi(.) can also be interpreted as bribes/transfers
to the administrators9.

A more general version of the logit form can be re-written as:

p(.) =
θφ1(e1,m)

θφ1(e1,m) + φ2(e2, n)
, (3)

where m,n ∈ �++. Let this class of contest probability functions be denoted by PL.
Formally,

PL = {p(.)|p(.) is defined in (3)}.10 (4)

The class PL captures the idea that the ‘output’ function φi() may itself be a function
of some innate ability (productivity) of the player i. If φ1() > φ2() for given e, then
player 1 is more productive than player 2 because for any given level of effort, the
output produced is higher for player 1. For example, we can have φ1(e,m) = em and
φ2(e, n) = en; m > n (for e > 1) means player 1 is more productive/able as compared
to player 2 and opposite will hold for n > m. We can also have φ1(e,m) = exp(me),
φ2(e, n) = exp(ne) where m � n indicates relative productivity.

For p(.) ∈ PL, the asymmetry of the contest, i.e., the relative advantage of the players
depend on θ as well on m versus n.

The existing literature has mostly focused on the asymmetry as represented by θ here,
and not the one on account of m and n. We will model and examine both sources of
asymmetry. We show that the two types of asymmetry have very different impact on
equilibrium efforts, costs and probabilities of success.

Some subclasses of PL which are of special interest.

9Dahm et al. (2005)
10This class of logit forms allows different functional forms for φ1(.) and φ2(.) e.g. φ1(e1) = em1

and φ2(e2) = exp(ne2), etc.
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PR =

{
p(.)|p(.) = θem1

θem1 + en2
| θ ∈ �++; m,n ∈ (0, 2]

}
(5)

PE =

{
p(.)|p(.) = θ exp(me1)

θ exp(me1) + exp(ne2)
| θ,m, n ∈ �++

}
(6)

PR is the class of ’ratio forms’11. PE is the class of ’exponential difference forms’12.
Both PR and PE are more general than the corresponding forms in the literature13.
Also, PE ∪ PR ⊂ PL

14.

Besides, there is another class of the ’difference form’ functions introduced by Baik
(1998). We denote this class by

PD =

{
p(.)|p(.) = f(d), where d = me1 − e2; m ∈ �++

}
(7)

Following Baik (1998), we assume that f(d) is twice continuously differentiable and
is such that f ′(d) > 0 ∀ d ∈ �; f ′′(d) � 0 ∀ d � 0; f(0) = 1/2; 0 < f(d) < 1 and
f(−d) = 1− f(d).

Clearly, PE ∩PR = φ. However PE ∩PD �= φ. For instance, exp(me1)
exp(me1)+exp(e2)

∈ PE ∩PD.
If p ∈ PE and n = 1, then p ∈ PD i.e. n = 1 ⇒ PE ⊆ PD. However, we show that the
assumption n = 1, comes at the cost of generality. In general, neither PE ⊆ PD nor
PD ⊆ PE. That is, PE and PD denote different class of difference forms. As illustra-
tions, note that θ exp(me1)

θ exp(me1)+exp(ne2)
∈ PE but /∈ PD. In contrast, p = f(d) = λ

1+c−kd +
1−λ
2

belongs to PD but not to PE. Similarly, when p = f(d) = (
√
2πq)−1

∫ d

−∞ exp(−z2

2q2
)dz

where c > 1, q > 0, k > 0, 0 < λ < 1 then p ∈ PD but /∈ PE.

To sum up, the probability of success function can be written p(θ,m, n, e1, e2) and

satisfies the following properties: ∂p(.)
∂e1

> 0, ∂p(.)
∂e2

< 0, ∂p(.)
∂θ

> 0.

If the value of the prize is known to both the parties with certainty (perfect infor-
mation), say when efforts are chosen after the random variable has been realized and
observed by the both players, then for any given effort level e2 opted by 2, individual
1 chooses e1 to solve

max
e1

{p(θ,m, n, e1, e2)v − ψ1(e1)} (8)

11The literature has generally considered the cases with m = n = 1. In general m = n case can
be derived when qi(ei, εi) = ei.εi and εi follows inverse exponential distribution

12the m = n case can be derived if qi(ei, εi) = ei + εi and εi follows extreme value distribution
(for details see Jia et al. (2013))

13See Section 2.
14e.g. θ log(me1 + 1)/[θlog(me1 + 1) + log(ne2 + 1)] ∈ PL but /∈ PR and /∈ PE
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where ψ1(e1) is continuously differentiable, ψ
′
1(e1) > 0 e1 > 0, ψ′

1(0) = 0, lime1→∞ ψ′
1(e1) →

∞15 and ψ
′′
1 (e1) > 0 e1 > 0. On the other hand, if the value of the random variable V

is not known to either player (symmetric uncertainty), individual 1 chooses e1 to solve

max
e1

{p(θ,m, n, e1, e2)E(V )− ψ1(e1)} , (9)

where E(V ) =
∫ v̄

v
vdF (v). The optimization problem for the second player are de-

fined similarly.

In the next section, we work with the above described classes of CPFs. The aim is
to characterize the conditions for existence of interior pure strategy Nash equilibrium
for these classes.

4 Equilibria: Existence and Properties

Now we examine the existence and properties of interior pure strategy Nash equilib-
rium for various classes of CPFs in the presence of perfect information about value
of prize, v.

4.1 Logit Form CPF

In this section we consider p ∈ PL. For any given effort level e2, player 1 chooses e1
to solve

max
e1

{
θφ1(e1)

θφ1(e1) + φ2(e2)
v − ψ1(e1)

}
(10)

where φ1(e1) ≥ 0 and φ′
1(e1) > 0. The corresponding problem for player 2 is analo-

gous. The two FOCs can then be written as:

φ
′
i(ei)

φi(ei)
pi(1− pi)v − ψ

′
i(ei) = 0, i = 1, 2 (11)

In view of the properties of φi(ei), for any given ej > 0, ei = 0 can not solve FOC for
player i. Hence one-sided corner solutions are ruled out16.

When p ∈ PR, let xi = ψi(ei). Since ψi(.) is a monotonic and convex function we can
write yi(xi) = ψ−1

i (xi) where yi(xi) = yi(ψi(ei)) = ei. Thus we can rewrite player 1’s
optimization problem as

max
x1

{
θ(y1(x1))

m

θ(y1(x1))m + (y2(x2))n
v − x1

}
(12)

15Similar assumptions are made for ψ2(e2)
16For p ∈ PR or p ∈ PE even (0, 0) can be ruled out
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Clearly y′i(xi) > 0 and y′′i (xi) < 0.
Using expression (11), for a general p ∈ PL, the FOC for player i can be defined as
gi(.) = 0, i = 1, 2 i.e., given m,n, θ, v and ej j �= i opted by the other player, where

g1(m,n, θ, v, e1, e2) =
mθ exp (me1 + ne2)

[θ exp (me1) + exp (ne2)]2
v − ψ

′
1(e1) (13)

= mp(1− p)v − ψ
′
1(e1). (14)

g2(m,n, θ, v, e1, e2) =
nθ exp (me1 + ne2)

[θ exp (me1) + exp (ne2)]2
v − ψ

′
2(e2) (15)

= np(1− p)v − ψ
′
2(e2). (16)

e∗1 and e∗2, as implied by (14) and (16), would be such that:

m

n
=
ψ

′
1(e

∗
1)

ψ
′
2(e

∗
2)

(17)

From (13), it is easy to check that e1 = 0 cannot solve FOC1 for any e2 ≥ 0. Ad-
ditionally, from (15), it can be seen that e2 = 0 cannot solve FOC2 for any e1 ≥ 0.
Thus we can rule out corner solutions where either players’ effort is zero and hence
we restrict attention to e1, e2 > 0.

For given m,n, θ and v, g1(.) is a continuously differentiable function. If we can
ensure that ∀e1, e2 > 0 ||∂g1

∂e1
|| is bounded away from zero, we can find a contin-

uous (smooth) function e∗1(e2) such that g1(m,n, θ, v, e
∗
1(e2), e2) = 0.17 Here ∂g1

∂e1
=

m2vp(.)(1− p(.))(1− 2p(.))−ψ
′′
1 (e1) where p(.)(1− p(.))(1− 2p(.)) is bounded above.

Moreover ψ
′′
1 (e1) > 0 ∀e1 > 0 and therefore for sufficiently small values of m2v,

∂g1
∂e1

< 0 ∀e1, e2 > 0. As an illustration consider the case when ψ1(e1) = e21/2.

Then m2v < 6
√
3 implies ∂g1

∂e1
< 0 ∀e1, e2 > 0. Thus we have a continuous

(smooth) function e∗1(e2) such that g1(m,n, θ, v, e
∗
1(e2), e2) = 0. Similarly, since

∂g2
∂e2

= n2vp(.)(1 − p(.))(2p(.) − 1) − ψ
′′
2 (e2), for sufficiently small values of n2v, we

can derive a continuous function e∗2(e1) such that g2(m,n, θ, v, e1, e
∗
2(e1)) = 0.

e∗2(e1) can be interpreted as the effort of player 2 which solves FOC2 for given e1.
If there exists an e1 = ê1 > 0 such that g1(m,n, θ, v, ê1, e

∗
2(ê1)) = 0, then ê1 and e

∗
2(ê1)

will solve both the FOCs simultaneously. Givenm2v > 0, lime1→0+ g1(m,n, θ, v, e1, e
∗
2(e1)) >

0, as lime1→0 ψ
′
1(e1) → 0 and lime1→∞ g1(m,n, θ, v, e1, e

∗
2(e1)) → −∞. Since g1(.) and

e∗2(e1) are continuous functions of e1, at some e1 > 0, g1(m,n, θ, v, e1, e
∗
2(e1)) = 0.

Thus we can conclude that under suitable parametric restrictions, there exists a pair
of (e1, e2), say (e∗1, e

∗
2) which solves both the FOCs and is such that e∗1, e

∗
2 > 0. In

other words, for at least some p ∈ PL, an interior solution (e∗1, e
∗
2) for the FOCs exist.

17Using Lemma 2 from Zhang & Ge (2006).
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Furthermore, if the second order conditions (SOC’s) are satisfied then e∗2(e1) is a Nash
equilibria of the contest.

Let p(e∗1, e
∗
2) = p∗. From (11) it follows that an interior pure strategy Nash equilibrium

(e∗1, e
∗
2) will satisfy:

φ1(e
∗
1)ψ

′
1(e

∗
1)

φ
′
1(e

∗
1)

=
φ2(e

∗
2)ψ

′
2(e

∗
2)

φ
′
2(e

∗
2)

= vp∗(1− p∗) (18)

We can re-write the above as

Φ1(e
∗
1)ψ

′
1(e

∗
1) = vp∗(1− p∗) = Φ2(e

∗
2)ψ

′
2(e

∗
2), (19)

where Φi(.) = φi(.)/φ
′
i(.). Let,

Ψi(.) = Φi(.)ψ
′
i.

When φi(.) and ψi(.), i = 1, 2, are such that Ψ1(.) = Ψ2(.) = Ψ(.), at any interior
Nash equilibrium, the following will hold:

Ψ(e∗1) = Ψ(e∗2). (20)

Now, if Ψ′(.) > 0, then e∗1 = e∗2 will also hold18. That is, we have the following result.

Proposition 1 When Ψ1(.) = δΨ2(.), and Ψ′
i(.) > 0, i = 1, 2, an interior pure

strategy Nash equilibrium will be symmetric iff δ = 1.

Note that Ψ1(.) = Ψ2(.) holds for several different combinations of functional forms
of φi(.), i = 1, 2 and ψi(.), i = 1, 2. If φ1(e) = φ2(e) and ψ1(e) = ψ2(e) then Ψ1(.) =
Ψ2(.) trivially holds. For example φ1(e) = φ2(e) = exp e and ψ1(e) = ψ2(e) = e2

2
,

Ψ1(e) = Ψ2(e) = e. Very different functional forms of φi(.), φj(.), ψi(.) and ψj(.) can

also give us Ψ1(.) = Ψ2(.). For example, when φi(e) = exp e and ψi(.) =
e2

2
, on one

hand, and φj(e) = e2 and ψj(e) = 2e give us Ψi(e) = Ψj(e) = e.

Furthermore, when φj(.) = ηφi(.), η > 0, Φi(.) = Φj(.) holds, which in turn gives the
following result.

Proposition 2 Suppose, Ψ1(.) = Ψ2(.) = Ψ(.), and Ψ′
i(.) > 0, i = 1, 2, and φ2(.) =

ηφ1(.), η > 0 then an interior pure strategy Nash equilibrium is symmetric as well as
unique.

Proof: Assume there are multiple equilibria. Consider any two distinct N.E., say
(ē1, ē2) and (ẽ1, ẽ2). In view of the above proposition, at any N.E., we have ē1 = ē2

18For convex cost functions, Ψ′(.) > 0 when p ∈ PE or p ∈ PR.
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and ẽ1 = ẽ2. Moreover, we have Ψ(ē1) = vp(ē1, ē2)(1 − p(ē1, ē2)) = Ψ(ē2), and
Ψ(ẽ1) = vp(ẽ1, ẽ2)(1− p(ẽ1, ẽ2)) = Ψ(ẽ2). However, when ē1 = ē2 and ẽ1 = ẽ2,

φj(.) = ηφi(.) ⇒ [p(ē1, ē2) = p(ẽ1, ẽ2)].

Therefore, we must have Ψ(ē1) = Ψ(ẽ1) and Ψ(ē2) = Ψ(ẽ2). This give us: ē1 = ẽ1
and ē2 = ẽ2. That is, the equilibrium is unique.

Proposition 3 Suppose Ψ1(.) = Ψ2(.) = Ψ(.) and Ψ′(.) > 0. If p(e1, e2) = p(te1, te2)
for all t > 0, then an interior pure strategy Nash equilibrium will be symmetric and
unique.

Proof follows from the fact that when p(.) is homogeneous function of degree 0,
φ2(.) = ηφ1(.) will hold.

Propositions 1 to 3 give the properties that any pure strategy Nash equilibrium for
a logit form CPF will satisfy, however we are yet to prove the existence of a Nash
equilibrium. Szidarovszky & Okuguchi (1997) show that for a subclass of PL, there
exists a N.E. Specifically, they show that for φi(0) = 0, φ′

i(ei) > 0, φ′′
i (ei) ≤ 0 and

ψ′′
i (ei) = 0, i = 1, 2, a unique Nash equilibrium for the problem exists. For p ∈ PR

with cost functions of the form ψi(ei) = eki k > 1, (12) can be rewritten as

max
x1

{
θxm̄1

θxm̄1 + xn̄2
v − x1

}
(21)

where m̄ = m/k and n̄ = n/k. If m,n ≤ k, results from Szidarovszky & Okuguchi
(1997) can be used to show the existence of a unique interior pure strategy Nash
equilibrium. Further, even for k < m = n ≤ 2k results from Baye et al. (1994) and
Cornes & Hartley (2005) show that an interior pure strategy Nash equilibrium exists.

However, existence of an equilibrium when p ∈ PE cannot be inferred from the lit-
erature. As the following examples show depending on value of the prize and the
parameters of contest, a Nash equilibrium may or may not exist. For these examples
we take ψ(e) = e2/2.

Example 1 Suppose m = 1/2, n = 1, θ = 1, v = 200. The only pair of efforts that
solves the FOC’s is (e∗1, e

∗
2) ≈ (2.44, 4.88) which gives p ≈ 0.025. However, in this

case, we get ∂g1
∂e1

∣∣∣
e∗1,e

∗
2

= 0.16 > 0 and ∂g2
∂e2

∣∣∣
e∗1,e

∗
2

= −5.64 < 0. That is, the SOC does

not hold for the first player. So, a Nash equilibrium does not exist.

Example 2 Let m = 2, n = 1, θ = 1, v = 100. Now, the unique solution to FOCs

is (e∗1, e
∗
2) ≈ (2.82, 1.41), which gives p ≈ 0.986. Moreover, ∂g1

∂e1

∣∣∣
e∗1,e

∗
2

= −6.48 < 0

∂g2
∂e2

∣∣∣
e∗1,e

∗
2

= 0.37 > 0 Again, a Nash equilibrium does not exist, as the SOC does not

hold for the second player.
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Example 3 Let m = n = 1, θ = 1/2, v = 100. In this case, the pair that solves the

FOC’s is (e∗1, e
∗
2) ≈ (22.22, 22.22) which gives p = 1/3. However, ∂g1

∂e1

∣∣∣
e∗1,e

∗
2

= 6.407 > 0,

and ∂g2
∂e2

∣∣∣
e∗1,e

∗
2

= −8.407 < 0. That is, there is no Nash equilibrium as the SOC does

not hold for the first player.

Example 4 Suppose m = 2, n = 1, θ = 1, v = 25. The FOCs yield (e∗1, e
∗
2) ≈

(2.06, 1.03) and p ≈ 0.95. Moreover, ∂g1
∂e1

∣∣∣
e∗1,e

∗
2

= −4.77 < 0, and ∂g2
∂e2

∣∣∣
e∗1,e

∗
2

= −0.06 < 0.

That is, the SOC hold for both players. Moreover, deviation to 0 effort is not profitable
to the either player. So, (2.06, 1.03) is a Nash equilibrium.

Example 5 Consider m = 2 n = 1, θ = 2, v = 40. In this case, it can be checked
that (1.97, 0.98) is a Nash equilibrium.

Below we show that under suitable parametric conditions a Nash equilibrium does
exist. We have already discussed the conditions which are sufficient to ensure that a
solution (e∗1, e

∗
2) to the FOCs exist. Next we check for SOCs in order to claim that

(e∗1, e
∗
2) is the mutual best response. Let us assume ψi(e) = ψ(e); i = 1, 2. Now, the

SOC’s for the players are given by ∂gi
∂ei

∣∣∣
e∗1,e

∗
2

≤ 0 i = 1, 2 where, g1(.) and g2(.) are as

defined above, and

∂g1
∂e1

= m(1− 2p)
∂p

∂e1
v − ψ′′(e1) = m2(1− 2p)p(1− p)v − ψ′′(e1);

∂g2
∂e2

= n(1− 2p)
∂p

∂e2
v − ψ′′(e2) = n2(2p− 1)p(1− p)v − ψ′′(e2).

First consider the case when m = n. In this case, since ψ1(.) = ψ2(.) by assumption,
from Proposition 2 we conclude that a solution to the FOCs is symmetric and unique.
The solution is given by e∗1 = e∗2 = ψ′−1

(
mvθ

(θ+1)2

)
. Note that e∗1 = e∗2 =⇒ p∗ = θ

θ+1
.

Thus the required SOCs can be re-written as:

∂g1
∂e1

∣∣∣
e∗1,e

∗
2

= m2v
(1− θ)θ

(1 + θ)3
− ψ′′(e∗1(m, v, θ)) ≤ 0;

∂g2
∂e2

∣∣∣
e∗1,e

∗
2

= m2v
(θ − 1)θ

(1 + θ)3
− ψ′′(e∗2(m, v, θ)) ≤ 0

For θ = 1, the SOCs for both players are trivially satisfied. If θ > 1 then SOC1 is
satisfied for all values of m and v but this is not necessarily the case with SOC2.
When θ < 1, SOC2 is satisfied for all values of m and v but the SOC1 may or may
not hold. However, from the above SOCs it is clear that for any give set of parametric
values, the SOCs hold for sufficiently small values of v.
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Specifically, when ψ(.) = e2/2, the sufficient conditions for the two SOCs to hold are:

When θ < 1, m2v ≤ (1+θ)3

(1−θ)θ
; and when θ > 1, m2v ≤ (1+θ)3

(θ−1)θ
. Note limθ→0

(1+θ)3

(1−θ)θ
= ∞,

and limθ→∞
(1+θ)3

(θ−1)θ
= ∞. That is, for θ close enough to 0 and ∞, the SOCs will hold

for a large class of m and v. When ∂g1
∂e1

< 0 and ∂g2
∂e2

< 0 hold for ∀e1, e2 > 0 the two
SOCs will ensure that (e∗1, e

∗
2) is a Nash equilibrium.

When ∂g1
∂e1

< 0 or ∂g2
∂e2

< 0 does not hold for ∀e1, e2 > 0, the FOCs can have multiple
solutions and there can be multiple best responses for one player or the other. In such
case, SOCs are not sufficient to for (e∗1, e

∗
2) to be a Nash equilibrium; neither player

should want to deviate to any other feasible effort level. Recall, at 0 net marginal
gains are positive for each player, regardless of the effort choice by the other player.
This means that from (e∗1, e

∗
2) if a unilateral deviation to 0 is profitable for a player,

there will be more such deviations for the player. Consider the following example:

Example 6 Let m = n = 1, θ = 1, v = 16. In this case, the only pair that solves
the FOC’s is (e∗1, e

∗
2) = (v/4, v/4) which gives p = 1/2.

At (e∗1, e
∗
2) payoff of the first player is π1(e

∗
1, e

∗
2) =

1
2
v − 1

2
( v
(2)2

)2 = 1
2
v(1− v

16
). Given

that player 2 is choosing e∗2, does choosing e1 = 0 make it better off? Yes it does. Note
π1(0, e

∗
2) =

1
1+exp(v/4)

v. It can be checked that for v = 16, 1
2
v(1 − v

16
) < 1

1+exp(v/4)
v.

That is, the only solution pair emerging from FOCs is not a Nash equilibrium. More-
over, when player 2 is choosing e∗2, other than e

∗
1 there are two more solution to the

FOC1 one of them gives higher payoff to Player 1.

So, for (e∗1, e
∗
2) to be a Nash equilibrium a necessary condition is that a unilateral

deviation from (e∗1, e
∗
2) to 0 should not profitable for either player. Let,

π1(e
∗
1, e

∗
2) and π2(e

∗
1, e

∗
2) denote the equilibrium payoff of player 1 and 2, respectively.

So, for (e∗1, e
∗
2) to be a Nash equilibrium we need to ensure:

π1(e
∗
1, e

∗
2)− π1(0, e

∗
2) =

θ

(1 + θ)
v

(
1− m2vθ

2(1 + θ)3

)
− θ

θ + exp(m2vθ/(1 + θ)2)
v

= (ΔΠ1)v ≥ 0 (22)

and

π2(e
∗
1, e

∗
2)− π2(e

∗
1, 0) =

1

(1 + θ)
v

(
1− m2vθ2

2(1 + θ)3

)
− 1

θ exp(m2vθ/(1 + θ)2) + 1
v

= (ΔΠ2)v ≥ 0 (23)

where

ΔΠ1 =
θ

(1 + θ)

(
1− m2vθ

2(1 + θ)3

)
− θ

θ + exp(m2vθ/(1 + θ)2)
(24)
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and

ΔΠ2 =
1

(1 + θ)

(
1− m2vθ2

2(1 + θ)3

)
− 1

θ exp(m2vθ/(1 + θ)2) + 1
(25)

When v > 0, ΔΠ1 ≥ 0 ⇐⇒ π1(e
∗
1, e

∗
2)−π1(0, e∗2) ≥ 0 and ΔΠ2 ≥ 0 ⇐⇒ π2(e

∗
1, e

∗
2)−

π2(e
∗
1, 0) ≥ 0. Clearly, at v = 0, ΔΠ1 = 0 = ΔΠ2 = 0. And for ΔΠ1 = ΔΠ2 = 0 since

e∗1 = e∗2 = 0. It can be seen that limv→0
∂(ΔΠ1)

∂v
= m2θ2

2(1+θ)4
> 0 and limv→0

∂(ΔΠ2)
∂v

=
m2θ2

2(1+θ)4
> 0, i.e., as v increases from 0, ΔΠ1 and ΔΠ2 increase initially to take positive

values. However, as v → ∞, ΔΠi → −∞. Since ΔΠ1 and ΔΠ2 are continuous
functions of v, we know that there will exist v where ΔΠi will reach zero. We can
conclude that there exist v̂1 > 0 and v̂2 > 0 such that for 0 < v ≤ v̂1, ΔΠ1 ≥ 0 and
for 0 < v ≤ v̂2, ΔΠ2 ≥ 0. Thus for v ≤ v̂ = min{v̂1, v̂2}, πi(e∗i , e∗j) ≥ πi(0, e

∗
j) will be

satisfied for i, j = 1, 2; j �= i.

Finally, it should be noted that the above arguments apply to any strictly convex
cost function. In other words, we have the following result.

Proposition 4 For any p ∈ PE, for any given m = n

(i) If θ = 1, then a unique and symmetric pure strategy Nash equilibrium exists for
a range of prize value. Equilibrium probability of win p∗ = 1/2.

(ii) If θ �= 1, then a unique and symmetric pure strategy Nash equilibrium exists for
a range of prize values. Equilibrium probability of win, i.e., p∗ = θ

θ+1
.

That is, when m = n, the equilibrium efforts are symmetric even in the presence of
asymmetry θ �= 1. Moreover, the natural advantage the players participate persists
in the equilibrium.

Next consider the case where m �= n. Now, for any given m,n and v, if the pair
(e∗1, e

∗
2), which solves both the FOCs simultaneously, is such that p∗ = p(e∗1, e

∗
2) = 1/2,

then both SOC1 and SOC2 are trivially satisfied. When p∗ = p(e∗1, e
∗
2) > 1/2, SOC1

is satisfied for all values of m and v, however, for SOC2 to be satisfied, we need:
∂g2
∂e2

∣∣∣
e∗1,e

∗
2

= n2(2p∗−1)p∗(1−p∗)v−ψ′(e∗2) ≤ 0. When ψi(ei) = e2i /2 i = 1, 2, the SOC2

holds if n2v < 1/[(2p∗ − 1)p∗(1 − p∗)]. The minimum value of 1
(2p∗−1)p∗(1−p∗) is 6

√
3

which is attained when p∗ = 1
2
+ 1

2
√
3
≈ 0.8. For any other value of p∗ > 1/2 such as

p∗ = 0.7 or p∗ = 0.9, n2v < 6
√
3 is still sufficient for SOC2 to be satisfied. This implies

that for any given value of n, a small enough v will ensure that SOC2 is satisfied.
Symmetric arguments apply when p∗ = p(e∗1, e

∗
2) < 1/2. In this case SOC2 is trivially

satisfied for all values of n, v and SOC1 will be satisfied for sufficiently low prize value.
SOC1 is satisfied ifm2v < 1/[(1−2p∗)p∗(1−p∗)]. The minimum value of 1

(1−2p∗)p∗(1−p∗)

is also 6
√
3 as in the previous case. It is attained when p∗ = 1

2
− 1

2
√
3
≈ 0.2. For any

other value of p∗ < 1/2 such as p∗ = 0.1 or p∗ = 0.3, m2v < 6
√
3 is still sufficient
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for SOC1 to be satisfied. We have already seen that these conditions are sufficient to
ensure that a solution to the FOCs exist. Also, as in case of m = n, it can be shown
that for small prize values, a deviation to zero effort is not profitable for either party.
Thus we can conclude that:

Proposition 5 For any p ∈ PE, given m,n s.t. m �= n, an interior pure strategy
Nash equilibrium exists for a range of (small) prize values.

The above propositions suggest that the existence of an equilibrium in an asymmetric
contest when p ∈ PE depends on the values of m,n and v. As an illustration, consider
the cases when m = n = 1 and with the case when m = n = 0.1. It can be deduced
from the conditions for existence that in the later case, equilibrium exists for a wider
range of prize values. In general, smaller values of m and n allow an equilibrium to
exist with the wider range of prize values. Also note that as pointed out earlier, fixing
n = 1 takes away this flexibility and thus costs the generality of the argument.

The above arguments apply to any strictly convex of effort function. Therefore, we
conjecture that Proposition 5 holds more generally.

4.2 Baik’s Difference Form CPF

The problems faced by the two players here are

max
e1

{vf(d)− ψ1(e1)} (26)

max
e2

{v(1− f(d))− ψ2(e2)} (27)

where d = me1 − e2.
19 FOCs for the above problems are given by:

FOC1− gB1 (m, v, e1, e2) = mvf ′(d)− ψ′
1(e1) = 0

FOC2− gB2 (m, v, e1, e2) = vf ′(d)− ψ′
2(e2) = 0

Since f ′(d) > 0 ∀d, e1 = 0 cannot solve FOC1 for any e2 ≥ 0 and e2 = 0 cannot solve
FOC2 for any e1 ≥ 0. Thus we can focus on the case e1, e2 > 0. From the FOCs in
an equilibrium we have

ψ′
1(e

∗
1)

m
= ψ′

2(e
∗
2)

If we have ψi(.) = ψ(.) ∀i = 1, 2 then it follows that a Nash equilibrium is symmetric
iff m = 1, i.e. iff the contest is symmetric.

19We have already shown the existence of a solution for p ∈ PE case. Combined with the fact that
PE ∩ PD �= ∅, we can conclude that solution to the problem exists for at least a subclass of p ∈ PD.
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From FOC1, for given m and v, gB1 (.) is a continuously differentiable function20 and
∂gB1
∂e1

= m2vf ′′(d) − ψ′′
1(e1). Since ψ

′′
1 (e1) > 0 ∀e1 > 0, for sufficiently small values of

m2v,
∂gB1
∂e1

< 0 ∀e1, e2 > 0. Thus, there exists a continuous (smooth) function e∗1(e2)
such that g1(m, v, e

∗
1(e2), e2) = 0.21 In fact, in view of our assumptions, arguing as

in the case of exponential form, it can be seen that there exists a pair (e∗1, e
∗
2) that

solves the FOCs. Moreover, (e∗1, e
∗
2) is such that:

ψ′
1(e

∗
1) = mψ′

2(e
∗
2) (28)

When ψi(e) = ψ(e), i = 1, 2, and m = 1 from (28) we can see that e∗1 = e∗2 =
ψ′−1(vf ′(0)) > 0. The SOC’s are:

SOC1− vm2f ′′(d∗)− ψ′′(e∗1) ≤ 0

SOC2− −vf ′′(d∗)− ψ′′(e∗2) ≤ 0

When m = 1, d∗ = 0 which implies f ′′(d∗) = 0. Thus, the SOC’s are trivially satisfied
in this case. This proves our next claim.22

Proposition 6 For any p ∈ PD, if m = 1, then there exists an interior pure strategy
Nash equilibrium.

Next consider the case m �= 1. For simplicity, assume ψi(ei) = e2i /2, i = 1, 2. Then

from (28), e∗1 = me∗2 =⇒ d∗ = me∗1 − e∗2 = (m2−1)
m

e∗1 where e∗1 > 0. Thus d∗ ≶ 0 as
m ≶ 1. Also, given continuity of f ′′(d) in d, it is easy to see that f ′′(d∗) is a continuous
function of m. First, the case when m > 1. i.e. f ′′(d∗) < 0. At (e∗1, e

∗
2) SOC1 is

satisfied but SOC2 may not be. For SOC2 to be satisfied we need f ′′(d∗) ≥ −1/v.
Similarly, for m < 1, SOC2 will be trivially satisfied and SOC1 will be satisfied when
f ′′(d∗) ≤ 1/m2v. However, for sufficiently small v both SOCs will hold.

Alternatively, we can take v to be given and ask if for some possible values of m, a
Nash equilibrium exists. First consider the case where m > 1. For given v, if f ′′(.)
is such that f ′′(d∗) < −1/v does not hold for any possible value of m. In this case,
SOC2 will be satisfied ∀ m s.t. m > 1. Therefore, let ∃ m such that f ′′(d∗) < −1/v.
Suppose m1 is the smallest m for which SOC2 is violated. Clearly m1 > 1. Since
f ′′(d∗) = 0 when m = 1, therefore continuity of f ′′(d∗) implies that for m ∈ (1,m1)
SOC2 will be satisfied. That is, ∃ δ2(v) > 0 such that (e∗1, e

∗
2) is a Nash equilibrium

if m ∈ (1, 1 + δ2(v)), where δ2(v) = m1 − 1. Similarly when m < 1, we can find a
δ1(v) > 0 s.t. SOC1 is satisfied for m ∈ (1− δ1(v), 1). Thus,

20By assumption f(d) is twice continuously differentiable.
21using Lemma 2 from Zhang & Ge (2006).
22Ideally one should also check that deviation to 0 effort are not profitable which is not possible

without knowing more about the function f(.).
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Proposition 7 Take any p ∈ PD. i) For any given m there exists ṽ(m) s.t. for any
v ≤ ṽ(m) there exists an interior pure strategy Nash equilibrium; ii) for any given v
there exists ṽ(m) δ1(v), δ2(v) > 0 s.t. for any m ∈ (1 − δ1(v), 1 + δ2(v)) there exists
an interior pure strategy Nash equilibrium.

In the next section we describe comparative static results. Here we concentrate on
p ∈ PR or p ∈ PE and compare the results for the two subclasses of logit form. We
look at the impact of change in productivity, natural advantage and prize value on
equilibrium efforts, cost of efforts and probability of win.

5 Comparative Statics

In this section we look at the class of CPFs P̄L = PE ∪ PR and convex cost of effort
function ψ(.) for both players. Suppose p ∈ PE. On derivating g1 and g2 as given
in (14) and (16) w.r.t α where α ∈ {v,m, θ} and solving the system of equations
obtained, we get

∂e∗1
∂α

=

∂g1
∂α

∂g2
∂e2

− ∂g2
∂α

∂g1
∂e2

∂g1
∂e2

∂g2
∂e1

− ∂g2
∂e2

∂g1
∂e1

(29)

∂e∗2
∂α

=

∂g2
∂α

∂g1
∂e1

− ∂g1
∂α

∂g2
∂e1

∂g1
∂e2

∂g2
∂e1

− ∂g2
∂e2

∂g1
∂e1

(30)

Let ∂g1
∂e2

∂g2
∂e1

− ∂g2
∂e2

∂g1
∂e1

= A. It is easy to check that A < 0 at any equilibrium. Addi-
tionally,

dp∗

dα
=

∂p

∂α

∣∣∣
e∗1,e

∗
2

+
∂p

∂e1

∣∣∣
e∗1,e

∗
2

∂e∗1
∂α

+
∂p

∂e2

∣∣∣
e∗1,e

∗
2

∂e∗2
∂α

,

which can be expressed as:

dp∗

dα
=

∂p

∂α

∣∣∣
e∗1,e

∗
2

+ p∗(1− p∗)
(
m
∂e∗1
∂α

− n
∂e∗2
∂α

)
. (31)

5.1 Impact of change in value of prize v

Here α = v. The required partials23 in (29) and (30) are ∂g1
∂v

= mp∗(1−p∗) > 0; ∂g2
∂v

=

np∗(1−p∗) > 0; ∂g1
∂e1

= m2v(1−2p∗)p∗(1−p∗)−ψ′′(e∗1);
∂g1
∂e2

= mnv(2p∗−1)p∗(1−p∗);
∂g2
∂e2

= n2v(2p∗ − 1)p∗(1− p∗)− ψ′′(e∗2);
∂g2
∂e1

= mnv(1− 2p∗)p∗(1− p∗).
Some useful relations are: ∂g1

∂e1
= m

n
∂g2
∂e1

−ψ′′(e∗1),
∂g2
∂e2

= n
m

∂g1
∂e2

−ψ′′(e∗2), and
∂g1
∂v

= m
n

∂g2
∂v

.

23Note that the above partials are all calculated at the equilibrium (e∗1, e
∗
2), e.g.

∂gi
∂ej

is nothing

but ∂gi
∂ej

∣∣∣
e∗1 ,e

∗
2

.
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Plugging the expressions of the calculated partials24 in (29) and (30) we find that for

any Nash equilibrium,
∂e∗1
∂v

> 0 and
∂e∗2
∂v

> 0 and therefore
∂(e∗1+e∗2)

∂v
> 0.

Furthermore, we have ∂p
∂v

= 0. So, dp∗
dv

= ∂p∗
∂e∗1

∂e∗1
∂v

+ ∂p∗
∂e∗2

∂e∗2
∂v
, which can be rewritten as

dp∗

dv
= p∗(1− p∗)

(
m
∂e∗1
∂v

− n
∂e∗2
∂v

)
.

where

m
∂e∗1
∂v

− n
∂e∗2
∂v

=
−p∗(1− p∗)

(
m2ψ

′′
(e∗2)− n2ψ

′′
(e∗1)

)
A

For the cost function
e21
2
we get m

∂e∗1
∂v

−n∂e∗2
∂v

= −p∗(1−p∗)(m2−n2)
A

. Thus, m
∂e∗1
∂v

−n∂e∗2
∂v

≷ 0
as m ≷ n. Therefore,

dp∗

dv
= p∗(1− p∗)

(
m
∂e∗1
∂v

− n
∂e∗2
∂v

)
≷ 0 as m ≷ n

These results also hold for any p ∈ PR with convex costs. Thus we get our next result.

Proposition 8 For p ∈ P̄L, for any given value of θ, m and n, ceteris paribus

(i) the equilibrium effort levels for both players (and thus the total effort expended
in the contest) increases with the value of prize.

(ii) the equilibrium probability of win for player 1 increases(decreases) with the
value of prize if m > (<) n .

5.2 Impact of change in natural advantage, (θ)

When α = θ, we have ∂g1
∂θ

= mv(1− 2p∗)∂p
∂θ

∣∣∣
e∗1,e

∗
2

; ∂g2
∂θ

= nv(1− 2p∗)∂p
∂θ

∣∣∣
e∗1,e

∗
2

, where

∂p

∂θ

∣∣∣
e∗1,e

∗
2

=
exp(me∗1) exp(ne

∗
2)

(θ exp(me∗1) + exp(ne∗2))2
=
p∗(1− p∗)

θ
> 0.

For this case, ∂g1
∂θ

= m
n

∂g2
∂θ

. The other partials are the same as in the previous case.
The effect of θ depends on the value of the equilibrium value of p, i.e., p∗.

∂e∗1
∂θ

=
∂g1
∂θ

(− ψ
′′
(e∗2)

)
A

=
−mv(1− 2p∗)∂p

∗
∂θ
ψ

′′
(e∗2)

A
(32)

∂e∗2
∂θ

=
∂g2
∂θ

(− ψ
′′
(e∗1)

)
A

=
−nv(1− 2p∗)∂p

∗
∂θ
ψ

′′
(e∗1)

A
(33)

24It is easy to check from the expressions that ∂g1
∂e2

∂g2
∂e1

≤ 0. Also, at any Nash equilibrium
∂g1
∂e1

∂g2
∂e2

≥ 0.
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It is easy to see that
∂e∗1
∂θ

≷ 0 as p∗ ≶ 1/2. Same is true for
∂e∗2
∂θ

, i.e.
∂e∗2
∂θ

≷ 0 as p∗ ≶ 1/2.
e∗1 and e∗2 are maximum when p∗ = 1/2 i.e. when the contest is symmetric.

For instance, when m = n, an equilibrium say (e∗1, e
∗
2, p

∗) = ( mvθ
(θ+1)2

, mvθ
(θ+1)2

, θ
θ+1

). In

this case, if θ < 1 then p∗ < 1/2 and hence
∂e∗1
∂θ

> 0 and
∂e∗2
∂θ

> 0. The opposite holds
true for θ > 1. The closer θ is to 1, i.e., the more symmetric the contest is, higher
are the efforts expended. 25

However, the equilibrium probability of win, p∗, increases with θ, i.e., dp∗
dθ

> 0 holds.

dp∗

dθ
=

∂p∗

∂θ
+
∂p∗

∂e∗1

∂e∗1
∂θ

+
∂p∗

∂e∗2

∂e∗2
∂θ

=
∂p∗

∂θ
+ p∗(1− p∗)

(
m
∂e∗1
∂θ

− n
∂e∗2
∂θ

)

=
∂p∗

∂θ

[
1− p∗(1− p∗)(1− 2p∗)v(m2ψ′′(e∗2)− n2ψ′′(e∗1))

A

]

It turns out that p∗(1− p∗)(1− 2p∗)v(m2ψ′′(e∗2)− n2ψ′′(e∗1)) > A, and since A < 0 at
any Nash equilibrium, therefore dp∗

dθ
> 0. The above findings can be summarized as

the next two results.

Proposition 9 For p ∈ P̄L, ceteris paribus, for any given given m,n > 0

(i) when m = n, probability of win for a player is a monotonically increasing func-
tion of her relative natural advantage.

(ii) the effort levels increases(decreases) with increase in θ if p∗ < 1/2 (p∗ > 1/2).
The maximum is achieved at p∗ = 1/2 i.e. when the contest becomes more
symmetric.

Proposition 10 For p ∈ PE and any given m, n, ceteris paribus, probability of win
for a player is a monotonically increasing function of her relative natural advantage.

5.3 Effect of change in m

When α = m, the required partials are ∂g1
∂m

= p∗(1−p∗)v+m(1−2p∗)v ∂p
∂m

∣∣
e∗1,e

∗
2
; ∂g2

∂m
=

n(1−2p∗)v ∂p
∂m

∣∣
e∗1,e

∗
2
. Moreover, it can be seen that ∂p

∂m
> 0 and ∂g1

∂m
= p(1−p)v+ m

n
∂g2
∂m

.

The other partials are the same as in the previous case.

25This result is parallel to the result given by Snyder (1989) with ratio form contest success
function and linear costs and result in Baik (1994).
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Using (29), (30) and the above partials, we get

∂e∗1
∂m

=
p∗(1− p∗)v ∂g2

∂e2
−m(1− 2p∗)v ∂p∗

∂m

A
(34)

∂e∗2
∂m

=
−(
p∗(1− p∗)v ∂g2

∂e1
+ n(1− 2p∗)v ∂p∗

∂m

)
A

(35)

For given θ, n and v, it can be seen that: If p∗ < 1/2, then
∂e∗2
∂m

> 0 and
∂e∗1
∂m

> 0.

On the other hand, if p∗ > 1/2 then
∂e∗2
∂m

< 0, however
∂e∗1
∂m

≶ 0 can hold. That is, the
effect of m on e∗ is ambiguous.
Furthermore,

dp∗

dm
=

∂p∗

∂m
+ p∗(1− p∗)(m

∂e∗1
∂m

− n
∂e∗2
∂m

).

Since m
∂e∗1
∂m

− n
∂e∗2
∂m

≶ 0 can hold, the sign of dp∗
dm

is ambiguous.

It should be noted that an increase in m or θ represent a favorable change for player
1. However, our results show that these changes may or may not have the similar
impact. To sum up, givenm, n, θ has a positive monotonic impact on this probability.
However, given for θ and n, m has an ambiguous impact on the probability of win for
player 1. Equilibrium effort for player 1 is a non-monotonic function of its productivity
m as well as θ, ceteris paribus. For given value of m and n, θ only effects the level
of impact of prize value on the probability of win. However, whether p∗ increases or
decreases with change in v depends on whether m ≷ n.

5.4 PE Versus PR

The above results on the comparative static for p ∈ PE are very similar to those for
p ∈ PR found in the existing literature. For instance, in the existing literature as well
as in our paper, ceteris paribus, the individual and hence the total effort provided by
the players are increasing function of the value of the prize. Consequently, the total
cost of efforts incurred by the players is also increasing function of the value of the
prize. Additionally, assuming m = n for p ∈ PE as well as for p ∈ PR, the equilibrium
probability of win for the first player increases with the player’s natural advantage,
i.e., θ. Moreover, the effort levels increase as the contest becomes more symmetric
i.e. as θ → 1.

It should be kept in mind that in the literature the results for the ratio-form are
derived using linear costs. In contrast, we have worked here with convex cost of effort
functions. However, for the ratio form CPFs even when the linear cost is replaced
with a convex cost function, the nature of optimization problem essentially remains
the same. Formally, from (12) it can be checked that when p ∈ PR, we can rewrite
player i’s optimization problem as

max
xi

{
θ(yi(xi))

m

θ(yi(xi))m + (yj(xj))n
v − xi

}
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where xi = ψi(ei), and yi(xi) = yi(ψi(ei)) = ei.
26 Since the nature of the optimization

problems does not change, results with strict convex cost functions are very similar.
It should be kept in mind that the claims in the literature related to the effort levels
will correspond to the levels of costs in our framework. Working backward we can
derive the results for the levels of effort.27

6 Concluding Remarks

By assuming strictly convex cost of effort functions, we have demonstrated the exis-
tence of pure strategy Nash equilibrium for the difference form CPFs, thus breaking
down the ’impossibility theorem’ given by Hirshleifer (1989). Moreover, we have
shown that properties of the equilibria and the comparative statics for the difference
form CPFs closely resemble those for the ratio form. However, there are a few in-
teresting differences as well. When contests are asymmetric with respect to innate
ability or productivity, unlike the ratio-form, in this case the existence of pure strat-
egy Nash equilibrium is sensitive to the size of the prize.

However, with convex cost functions, some interesting differences emerge between
the ratio form and the logit form CPFs. For illustration, consider the case when
m = n and ψ(e) = e2/2: For p ∈ PE, we have e∗1 = e∗2 = mvθ

(θ+1)2
and ψ(e∗1) =

ψ(e∗2) = 1
2

(
mvθ

(θ+1)2

)2
. However, for p ∈ PR, it can be seen that the equilibrium val-

ues of costs are xr∗1 = xr∗2 = mvθ
(θ+1)2

and the corresponding levels of effort levels are

er∗1 = er∗2 =
(

2mvθ
(θ+1)2

) 1
2 .

Therefore, when p ∈ PR, the cost of effort is a constant proportion of the prize value
and given by mθ

(θ+1)2
. That is, the proportion of prize value spent in the form of

cost of efforts does not change with the value of the prize. On the other hand, for

p ∈ PE, the proportion of prize value expanded as the cost of total effort is
(

mθ
(θ+1)2

)2
v,

which increases in direct proportion to the value of prize. As to the levels of efforts,
when p ∈ PE, the effort levels, 2mθ

(θ+1)2
, are a constant proportion of the prize value.

However, for the ratio form the effort levels are inversely proportional to the prize

value. Moreover, if we suppose θ = 1, then e∗1 + e∗2 =
mv
2

and er∗1 + er∗2 = 2
(
2mv
4

) 1
2 .

e∗1 + e∗2 � er∗1 + er∗2 as mv � 8

i.e. either of the two CPFs can lead to greater total effort in the equilibrium.

26For the ratio form CPFs we have used cost function of the specific form ψ = ek, k > 1 because
it allows us to keep expressions same as normal ratio form!

27The details are are presented as Web-index and are available at http://econdse.org/ram-
research/.
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