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ABSTRACT

Much empirical research has shown that individuals’ decisions to adopt a new technology are the result of 
learning–both through personal experimentation through observing the experimentation of others. Yet 
even casual observation would suggest significant heterogeneity of learning processes, manifesting itself 
in widely varying patterns of adoption over space and time. This paper explores this heterogeneity in the 
context of early adoption of hybrid rice in rural India. Using specially designed experiments conducted as 
part of a primary survey in the field, we identify which of four broad learning heuristics most accurately 
reflects individuals’ information processing strategies. Linking these learning heuristics with observed use 
of rice hybrids, we demonstrate that pure Bayesian learning is well suited for the tinkering and marginal 
adjustments that are required to learn about a technology like hybrid rice, but it is also more cognitively 
taxing than other learning styles requiring a longer memory and more complex updating processes. 
Consequently, only about 25 percent of the farmers in our sample can be characterized as pure Bayesian 
learners. Present-biased learning and relying on first impressions will likely hinder adoption of a 
technology like hybrid rice, even after controlling for access to credit and a rudimentary proxy for 
intelligence.

Keywords: learning heuristics, experimental economics, technology adoption, India
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1. INTRODUCTION

In many parts of the developing world, the transition from indigenous practices to modern technologies is
often viewed as a critical step toward achieving broad agricultural development objectives such as food
security or self-sufficiency. Experiences from the Asian Green Revolution from the mid-1960s through the
end of the 1990s provide an almost textbook illustration of this process (for example Gollin et al. 2005).
During its early years, most of the Green Revolution was concerned with the transition from traditional
varieties and landraces to modern, high-yielding varieties, specifically the adoption of semidwarf varieties
of rice and wheat. From 1965 to 1970, estimates suggest that the cultivation of modern varieties of rice and
wheat in South Asia increased from an essentially negligible baseline to 10 percent and 39, respectively,
percent of harvested area (Gollin et al. 2005). In India, as in much of South Asia, the adoption of these
modern varieties provided the potential for increased yields, though arguably these new varieties did not
reach their full yield potential until they were paired with complementary inputs, such as irrigation and
fertilizers. Indeed, the diffusion of these modern varieties in many ways propelled the adoption of
fertilizers and irrigation (Morris and Byerlee 1998; Gollin et al. 2005). But although the expansion of
irrigation facilities and the increased use of chemical fertilizers and pesticides share some of the credit for
the massive gains in food grain production during this period, such gains arguably might never have been
possible without the widespread adoption of high-yielding rice and wheat varieties that were particularly
responsive to these complementary inputs (for example Morris and Byerlee 1998).

This process of varietal modernization has been inconsistent over both space and time. Most of the
benefits of these modern varieties were realized in the northwestern states of Punjab, Haryana, and western
Uttar Pradesh, who had larger and more egalitarian farm structures and generally greater access to
irrigation, in some cases due to a more favorable policy environment. In other parts of India–particularly
eastern Indian states such as Bihar, Odisha, and West Bengal–varietal modernization has been
considerably slower. Furthermore, while there was initially quite rapid adoption of these modern varieties,
the cumulative level of adoption, especially for rice, remains incomplete to this day. And even where
farmers have made the transition from traditional varieties or landraces to modern varieties (what Morris
and Byerlee 1998 refer to as Type A varietal change), there has not necessarily been a subsequent
transition from first generation modern varieties to newer modern varieties (what Morris and Byerlee 1998
refer to as Type B varietal change). This latter form of varietal modernization has been shown to be
particularly important, as many of the genetic advantages conferred by the breeding efforts deteriorate over
time, resulting in reduced productivity and increased susceptibility to various stresses (Krishna et al.
2016). Furthermore, more rapid varietal turnover among modern varieties allows farmers access to
technological enhancements embodied in newer germplasm. As the private seed sector continues to
develop within India, this varietal turnover will likely take the form of switching from inbred varieties to
hybrids, which offer higher yields and lower seed rates, though at the expense of farmers’ being able to
save seed from year to year.

It has often been observed that the adoption of new technologies, including new cultivars, is a
gradual process. When plotted against time, the cumulative proportion of a population adopting a given
technology generally follows a sigmoid (S-shaped) trend, wherein the most rapid adoption (that is, at an
exponential growth rate) occurs at some nontrivial time after the initial introduction of a technology
(Griliches 1957; Rogers 1995). The shape of the diffusion curve implies a great deal of heterogeneity,
which manifests itself through differentials in the timing of adoption among farmers in the population (for
example, some farmers are innovators, some are laggards, and so on). If one considers differences in the
shape and the location of such diffusion curves across subgroups in the population (for example, across
different states), there emerges an even greater degree of cross-sectional heterogeneity, not just in terms of
differences in the timing of adoption (that is, what Griliches 1957 refers to as the “date of origin”) in these
different subgroups, but also the pace of adoption (that is, the “rate of acceptance”) and the timing and
cumulative level of steady-state or equilibrium adoption rates.
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What factors underlie the observed heterogeneity in the adoption of new technologies? Clearly,
differences in resource constraints including access to credit, labor availability, and landownership affect
individual adoption decisions. Additionally, various studies also attribute this heterogeneity to
idiosyncratic differences in farmers’ risk preferences (for example Feder 1980; Feder et al. 1985). When
considering a new technology, farmers are confronted with considerable uncertainty, not only because
there is risk associated with the yield or profitability of the technology, but also because the nature of this
risk (that is, the underlying distribution of yields or potential farm profits) is unknown. The decision to
transition from a traditional technology to a new technology requires some consideration of the relative
benefits of the two.1 Under this view, therefore, there must be some process or mechanism by which
expectations of the long-term value of the technology are uncovered or inferred. This, in turn, implies that
a precondition for technology adoption is that the potential adopter has, in some fashion or another, learned
about the potential benefits of the new technology, compared these benefits with those of the traditional
technology, and considered the cost of transitioning from the traditional to the modern technology.

In the context of modern seed varieties during the Green Revolution, Foster and Rosenzweig
(1995) demonstrated the importance of learning, both from one’s own experimentation and from in
observing the experimentation of others. They suggested that imperfect or suboptimal input usage is the
result of imperfect subjective beliefs, which are subsequently improved through Bayesian updating with
increased experience with the new varieties. The profitability of modern varieties is increasing in farmers’
own and their neighbors’ experience with the modern varieties, but farmers with relatively richer neighbors
are more likely to delay adoption and observe the costly experimentation of their neighbors. Foster and
Rosenzweig (1995) suggested that these neighbor effects result in free riding on the experiences of more
capitalized farmers with respect to modern seed varieties in India. In their study of Mozambican farmers,
Bandiera and Rasul (2006) found an inverse U-shaped propensity to adopt relative to the numbers of
family members and friends who adopt. There is an increasing network effect when there are relatively
few adopters in the network, but as the number of adopters increases, the propensity to adopt declines, an
effect attributed to strategic delay. In both cases, there is apparently a conflict between the uncovering of
additional information on the benefits of the new technology and the temptation to delay one’s own
adoption until the full distribution of potential benefits is realized: more information is helpful in providing
optimal input information, but having multiple observations potentially allows farmers to wait and observe
heterogeneous outcomes before experimenting on their own.

Heterogeneity in individual learning may influence how farmers weigh information from others
thus encouraging or inhibiting social learning. Conley and Udry (2010) considered the issue of
information quality in social learning and allowed for a more flexible learning model that does not force
farmers to learn an entire production function. Rather, according to the authors, famers engage in local
learning, or learning just about the relevant outcomes of the production function for the level of inputs
applied. Munshi (2004) exploited heterogeneity in growing conditions among rice farmers during the
Green Revolution to show that rice farmers were more likely to experiment than wheat farmers because the
quality of social information among wheat farmers was considerably lower. In contrast, wheat farmers
responded strongly to neighbors’ experiences as well as targeted extension efforts with groups of contact
farmers. Social learning has the capacity to overcome the challenges farmers face in making adoption
decisions, though there remain groups of farmers on both the intensive and extensive margin who rely on
learning by doing and individual experimentation when making adoption and intensity decisions.
Additionally, longer and more heterogeneous processes of diversification and adaptation to climate change
may limit the scope for farmers to learn from their neighbors, forcing many farmers to rely on individual
learning and experimentation.

There is a considerable literature addressing how individuals process information and update
1Traditionally, it was thought that such decisions were made on the basis of net present value. Carey and Zilberman (2002)

have suggested that one source of heterogeneity in technology adoption may arise due to differences in the option value ascribed to
postponing investment in the new technology (that is, differences in the critical value above which the expected long-term value of
adoption must exceed the initial investment).
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beliefs in repeated decision making and noncooperative games, as well as decades of research on the role
of learning by doing and learning from others within one’s social network in technology adoption.
However, with the exception of Barham et al. (2015), there has been little work analyzing how individual
learning heuristics vary across actual decision makers and how they affect adoption decisions. This study
attempts to uncover some of the broad heuristics through which individuals form and update expectations
about conditional probability distributions that facilitate or constrain the process of technology adoption in
rural India. It utilizes field experiments to elicit and characterize individual learning styles, and combines
these findings with risk and uncertainty preferences and observed adoption decisions to test whether
heterogeneity in learning acts as a significant barrier to adoption. The study considers a set of simple
individual learning models outlined in Gans et al. (2007), which are used to analyze the role of learning in
adoption decisions as introduced by Barham et al. (2015). While there are potentially as many unique
information processing strategies as there are heterogeneous agents being studied, these strategies may be
classified according to a small group of key heuristics. These learning rules include strict Bayesian
learning as well as more simplified processes that vary over the time horizon that people use to calculate
expectations (first impressions versus short memory) and over classifications of outcomes into “good” and
“bad” draws. Although Bayesian learning is widely assumed in economic research as a model for updating
expectations, the other learning rules have legacies in the psychological literature. These non-Bayesian
processes are less complicated heuristics of belief formation that may be more appropriate behavioral
approximations of subjective belief updating in actual decision making. Previous research on
belief-updating heuristics have found that subjects in the lab, including farmers in the United States,
exhibit substantial heterogeneity in how they update beliefs, and that this heterogeneity is partially
explained by observable levels of education and cognitive ability (Cheung and Friedman 1997; Camerer
and Ho 1999; Gans et al. 2007; Barham et al. 2015). Additionally, Barham et al. (2015) found that
Bayesian learning performed poorly among Wisconsin and Minnesota farmers, and that farmers who
formed strong beliefs were slower adopters of new technologies, namely genetically modified maize and
soybeans. One would expect Bayesian updating to be an even poorer model of learning among relatively
less educated populations in rural areas in developing countries.

This present study builds upon this previous research using field experiments with farmers in rural
Bihar, India. Ignorance about returns on inputs or optimal management of technologies has been argued to
be a pertinent cause of underinvestment in inputs and new technologies in developing countries (Foster and
Rosenzweig 2010). As previously mentioned, empirical evidence from India suggests that more highly
educated farmers are “better” learners and may be more efficient at processing information due to their
ability to do so across multiple dimensions of technology usage (Foster and Rosenzweig 1995; Hanna
et al. 2014). The state of Bihar, India, has experienced some of the highest economic growth rates in India
over the past decade but remains one of the poorest states in India. The lack of long-term growth has been
attributed to the state’s relatively low human capital stock alongside large variations in aggregate total
factor productivity due to poor agricultural productivity. Chanda (2011) estimated average years of
schooling among adults in Bihar to be 3.5 years, with nearly half of the adult population having no
schooling.

In an effort to shed light on the impact of learning on technology adoption in rural Bihar, our
empirical tests take advantage of a multiyear panel dataset of 576 farmers in rural India. During the initial
round of data collection in 2013, we elicited farmers’ risk and uncertainty preferences using lottery-based
experiments, in which farmers were asked to make a series of choices between a lottery and a riskless
payout. The results of this experiment were then used to estimate learning behavior based on a learning
experiment conducted during the second round of data collection in 2014. In this learning experiment,
farmers again made a series of decisions between a lottery and a riskless payout, but each subsequent
round revealed more information about the underlying distribution of risk in the lottery. Farmers’ actual
payoffs in the lottery were based on the true distribution of beads in a bag, but their per-round expected
utility payoffs were based on their updated beliefs as more information was revealed. We collected
plot-level inputs and yields in both survey rounds, as well as individual characteristics, including age,
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caste, and literacy, that potentially affect the learning and technology adoption process. Results from the
learning experiments reveal considerable heterogeneity in learning across farmers, assuming both risk
neutrality and risk aversion. In the case of risk neutrality, we find that Bayesian learning is not an
inappropriate model of belief updating for many farmers, but overweighting early events is a better
approximation of their learning style, regardless of whether risk neutrality or risk aversion are assumed.
We also find evidence that caste and cognitive measures explain some of the variation in learning rules,
though much of the variation remains unexplained by observable characteristics. Finally, we link
individual learning rules with adoption behavior and find that farmers who weight only recent information
are less likely to be early adopters of new technology.
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2. REVIEW OF PREVIOUS LITERATURE ON LEARNING STYLES

Farmers’ adoption decisions rely on their processing information about the productivity or profitability 
of various technologies, updating their beliefs given this new information, and subsequently making 
choices based on their posterior, subjective distributions. Identifying sources of heterogeneity in the 
intensity and timing of the adoption of productive technologies has been the focus of empirical research 
for decades (Griliches 1957; Feder 1980; Foster and Rosenzweig 1995). The technology adoption 
literature has typically assumed Bayesian learning because it is empirically tractable and theoretically 
consistent (Foster and Rosenzweig 1995; Conley and Udry 2010). However, this is clearly an unrealistic 
assumption in almost any real-world context. Voluminous research suggests that individuals simplify 
otherwise complex cognitive tasks (for example Tversky and Kahneman 1974), and furthermore that 
there is substantial heterogeneity in the learning rules or heuristics that people employ, which may affect 
the adoption decision and interact with other characteristics (that is risk preferences) to encourage or 
prevent adoption (Gans et al. 2007; Barham et al. 2015). The literature on learning in noncooperative 
games has adapted a variety of models of learning and belief updating beliefs that may be more relevant 
in contexts with low levels of human capital (Cheung and Friedman 1997; Camerer and Ho 1999).

Differences in non-Bayesian updating or learning are the result of how people process or weight 
the information at their disposal. Belief-learning models characterize how players update beliefs and 
make decisions given their subjective expected distribution based on their history of observed outcomes. 
Two common belief-learning models are Cournot learning (short memory) and fictitious play (long 
memory). Cheung and Friedman (1997) developed a general one-parameter class of learning rules (for 
weighted fictitious play) that nests Cournot and fictitious play as special cases, with a range between 
them of adaptive learning rules whereby all observations may affect the expected state but the weight 
given to more recent information varies with the parameter. Importantly, Cheung and Friedman (1997) 
found that players exhibit a range of learning styles and are more likely to weight recent information in 
more informative environments. Camerer and Ho (1999) introduced a hybrid model of learning that 
includes aspects of both belief learning and reinforcement, or rote, learning. Their experience-weighted 
attraction model “wraps a parametric skin” around belief and reinforcement learning as boundaries of the 
parameter space. However, this model may have little relevance in purely individual games in which 
payoffs from other strategies are stochastic and not well known.

The learning models described above belong to the set of individual learning models, or what 
may be considered behavioral models of “learning by doing.” Other prominent individual learning 
models include reinforcement learning and individual evolutionary learning, which have applications in a 
variety of settings but may be less relevant for technology adoption (Erev and Roth 1998; Arifovic and 
Ledyard 2011). The present study seeks to identify heterogeneous learning styles and determine their 
effect on technology adoption decisions in which farmers make choices over multiple technologies that 
have unknown yield or profit distributions. The farmers’ problem, then, is similar to two-armed or multi-
armed bandit problems, in which farmers are optimizing their decisions while simultaneously improving 
their information. The farmers face the inherent trade-off between experimentation (that is, on a 
temporary and reversible basis) and adoption (that is, on a more permanent and irreversible basis). 
Results from multi-armed bandit experiments provide evidence that people diverge from Bayesian 
behavior in many situations. Meyer and Shi (1995) found that players tend to be myopic in their updating 
and to make less-than-optimal decisions due to this type of updating. Anderson (2001) attributed less-
than-optimal experimentation to risk aversion. Gans et al. (2007) evaluated multiple simple updating rules 
relative to the Gittins index, finding that people show substantial heterogeneity in their updating rules and 
that they outperform the optimal decisions given the environment.
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Barham et al. (2015) developed a learning experiment in which subjects chose between a sure 
and a risky payoff as they obtained more information about the underlying probability distribution of
“winning” and “losing” draws in a risky lottery, after a series of draws with replacement. After 
evaluating the learning rules used by Gans et al. (2007) and find evidence that farmers in their sample 
tended to be most influenced by recent draws. The authors concluded, however, that there is 
heterogeneity in learning rules, given the fact that some farmers acted in a way that was closer to the type 
of behavior that would be predicted by strict Bayesian updating. Farmers with higher levels of education 
were more likely to use more sophisticated learning rules, suggesting that increased human capital may 
diminish the impacts of suboptimal learning. Integrating their experimental results with Wisconsin 
farmers’ recollection of the timing of their adoption of genetically modified maize and soybeans, Barham 
and colleagues (2015) found that farmers who develop strong beliefs (such as being sensitive to first 
impressions) are slower adopters because they neglect continual learning.
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3. EMPIRICAL STRATEGY

Data and Sampling Methodology

The data used in this study come from laboratory-in-the-field experiments conducted as part of a larger,
longitudinal data collection effort that gathered, among other things, data on household structure and
household member characteristics; seasonal data on land utilization and season-, plot-, and variety-level
data on rice production and input use. We employed a multistage sampling strategy. In the first stage, we
selected 3 districts heavily dependent upon rice production but also displaying significant heterogeneity in
terms of agroecological conditions. These districts were Bhojpur (in west-central Bihar), Nawada (in south
Bihar, bordering Jharkhand) and Madhubani (in north Bihar, bordering Nepal). Figure 3.1 illustrates the
geographic location of each of these districts. In the second stage, we selected 16 high-rice-producing
blocks (sub-district administrative units) across the 3 districts, where the share of blocks drawn from each
district was proportional to that district’s share in overall rice production among the 3 selected districts.
Within each of these 16 blocks, we randomly selected 2 villages. Finally, from each of these 36 villages,
we randomly selected 18 rice-growing households.

Figure 3.1 Location of sample districts in Bihar, India

Source: Authors.

The first round of data collection commenced in April 2013, prior to the kharif (monsoon) season.
This survey collected detailed information on agricultural production and input use for kharif 2012, along
with risk and uncertainty preferences elicited through an experimental approach similar to the one used by
Barham et al. (2014). In addition, the survey gathered information on characteristics of the household
head, such as caste, level of education, age, and access to credit. During the follow-up survey in April
2014, we gathered information on input usage during kharif 2013 and planned input usage in kharif 2014,
which, at the time, was roughly two months away. Input and production data were plot specific for up to
five of a given farmer’s plots on which rice was cultivated. The inputs covered in the survey included
irrigation, fertilizers, and seed, with irrigation and fertilizer information collected for each application
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throughout the season. Plot-level characteristics included slope, soil type, erosion, and contract type. Seed
varieties were delineated by name and whether they were local, hybrid, or high-yielding varieties. As a
result of the two rounds of data collection, we have plot- and time-specific application amounts (planned
for kharif 2014 and used during kharif 2013 and 2012). During the follow-up survey in 2014, we also
conducted a novel experiment to identify the heuristic that would most closely characterize the way in
which individuals in the sample processed information and refined beliefs.

Experimental Procedure

Before describing the experimental procedure for eliciting individual learning rules, we will first briefly
introduce the experiments that were used to elicit risk and uncertainty preferences, because these
preferences play an instrumental role in the identification of learning rules (Ward and Singh 2015). The
identification of risk and uncertainty preferences involved two related experiments conducted as part of the
first round of data collection in 2013. In each experiment, farmers were presented with a series of 11
choices between a riskless option and a risky option, which took the form of a simple lottery. The riskless
option was always a guaranteed payment of 20 Indian rupees (Rs). The lotteries consisted of a “winning”
draw paying Rs 40 and a “losing” draw paying some lesser amount. The amount of the “losing” draw
monotonically decreased with each subsequent choice. Because this “losing” draw was monotonically
decreasing, we might expect respondents’ preferences between the risky and riskless options to change at
most one time. Following Tanaka et al. (2010), we enforce monotonic preference switching by asking
respondents only about the particular choice at which they would switch from preferring the risky option
to preferring the riskless option.

Where the risk and the uncertainty experiments differed was in the information provided to the
respondent about the probabilities associated with the “winning” and “losing” draws in the lottery. In the
uncertainty experiment, farmers were asked to choose between the risky and riskless options without being
provided any information on these probabilities, so that they had to rely instead on naı̈ve subjective
expectations. In the subsequent risk experiment, farmers were told that the odds of “winning” and “losing”
the lottery were 50:50. The uncertainty experiment was completed first to ensure that the farmers did not
base their beliefs about the distribution of “winning” and “losing” draws on the probabilities revealed in
the risk experiment. To communicate this probability, respondents were shown a bag containing 10 chips,
numbered 1 through 10. Chips 1 through 5 were considered to be “winning” draws, while chips 6 through
10 were considered “losing” draws.

Assuming that preferences exhibit constant relative risk aversion and constant relative uncertainty
aversion (CRRA and CRUA, respectively) with isoelastic utility function u(c) = c1−ρ

1−ρ
for ρ 6= 1 and

u(c) = lnc for ρ = 1, in which ρ is the CRxA coefficient, then the payout at which the respondent switches
from preferring the risky option to preferring the riskless option allows us to estimate an interval of
possible aversion risk and uncertainty aversion coefficients. While we can identify CRxA coefficients
within an interval, in the ensuing analysis we make the simplifying assumption that an individual’s risk or
uncertainty aversion coefficient takes the value of the upper limit of the interval within which the
individual’s choices would be consistent.

We attempted to make the choices in these experiments incentive compatible by paying 
respondents the specified amount for a random choice, depending upon their preference for the risky or 
riskless option in that particular situation, and if they preferred the risky option, allowing them to make a 
random selection of a chip from the bag containing 10 chips.2 Table 3.1 illustrates the series of decisions 
that participants were asked to make.

2In reality, there were three other similar experiments that were conducted during the same interview, so the potential payout
was not limited to these two experiments.
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Table 3.1 General structure of risk and uncertainty experiments and corresponding 
coefficients of risk and uncertainty aversion for given switching decision

Riskless 
 payout

      Risky option  Interval of CRxA
      "Winning"  "Losing" coefficient for switching   

           draw           draw from risky to riskless
1 Rs 20 Rs 40 Rs 20 (3.76,∞)
2 Rs 20 Rs 40 Rs 20 (1.86,3.76]
3 Rs 20 Rs 40 Rs 20 (1,1.86]
4 Rs 20 Rs 40 Rs 20 (0.65,1]
5 Rs 20 Rs 40 Rs 20 (0.52,0.65]
6 Rs 20 Rs 40 Rs 20 (0.40,0.52]
7 Rs 20 Rs 40 Rs 20 (0.31,0.4]
8 Rs 20 Rs 40 Rs 20 (0.22,0.31]
9 Rs 20 Rs 40 Rs 20 (0.09,0.22]

10 Rs 20 Rs 40 Rs 20 (0.0,0.09]
11 Rs 20 Rs 40 Rs 20 (−∞,0.0]

The learning experiment was designed in such a way that we are able to identify the most likely
heuristic by which individuals form and update beliefs. In this particular experiment, we learned about the
rules farmers employed to update their beliefs about the distribution of green and blue beads in a bag
containing a total of 100 beads. Before commencing with the actual experiment, farmers were given
instructions on its overall structure, goals, and rules, as well as information on the real financial
implications of their decisions. There was also a practice round in which the farmers had the opportunity
to practice counting beads and making choices between risky and riskless options (described below). If
they chose the risky option during the practice round, the enumerator asked them what their compensation
would be if this had been a decision with real financial implications depending upon their draw of a bead
from the bag. Even if they chose the risky option, they were subsequently asked to explain what their
compensation would have been if they had chosen the riskless option instead, and whether this decision
had real financial implications. The same procedure took place if they initially chose the riskless option. If
they made any mistakes in understanding the process or compensation, the enumerator explained the rules
again, and with the same beads they had already drawn, asked them to go through the process again.
Finally, the enumerator recorded how well the respondents understood the experiment.3

The farmers were not aware of the actual distribution of green and blue beads prior to the
commencement of the experiment. In each round, the farmers drew five beads at random from the bag.
After each draw, the number of blue and green beads was recorded on a laminated experiment sheet. The
farmers were allowed to contemplate the outcome of a draw before being asked to choose between a
riskless option and a risky option for the next draw. As with the risk and uncertainty experiments, the
riskless option in the learning experiment consisted of a guaranteed payment of Rs 20. The stakes of the
risky option were specific to the individual: the high payout (with probability equal to the number of blue
beads in the bag) was always Rs 40, but the low payout (with probability equal to the number of green
beads in the bag) was determined by each farmer’s switching value in the uncertainty experiment described
above. Because they did not know the true number of blue and green beads in the bag, their expected
payoffs in these situations were determined by their beliefs about the distribution of green and blue beads,
based on their current and any previous observations of the draws. After farmers made their choice
between the risky and riskless alternatives, the selection was recorded on the same laminated sheet as the
number of blue and green beads from previous draws.

3Clearly, the practice round provided some information about the number of beads in the bag, and therefore the learning rules
are calculated by including this information as the first round in the updating of subjective probabilities.
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               aversion or constant relative uncertainty aversion; Rs = Indian rupees.
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This process continued in the same fashion for 14 rounds. After completion of the 14th round, the
farmers were asked to state their belief about the actual number of blue beads in the bag and were
informed that they would be rewarded an extra Rs 5 if they were within 2 of the correct answer (72). After
making this guess, the true number of beads was revealed, and farmers were asked one more time to
choose between the risky and riskless options. To reduce hypothetical bias, farmers were informed prior to
commencing with the experiment that they would be compensated based on one of their choices across the
decisions. Their payment was based on a decision that was selected randomly after all decisions were
made. If they chose the riskless option in that decision round, they would receive Rs 20 rupees. If they
chose the risky option in that decision round, they were then asked to draw a single bead at random from
the bag of blue and green beads to determine their payout from the lottery.

Decision Model

Assuming a random utility model, choices reflect utility-maximizing behavior with an additive random
component. For each choice, agents assess the expected utility difference between choosing the risky
option (lottery) and the sure payout using their subjective probabilities to infer the value of the risky
option. Assuming that the random component for each choice is independently and identically distributed
following an extreme-value type 1 (Gumbel) distribution, the choice model in each period reduces to a
logit:

P(Choose risky option) =
e(z)

1 + e(z)
, (1)

where z is the difference in expected utility between choosing the risky option and choosing the riskless
option.

Consider the case in which an individual is faced with a choice between a sure payment of Rs 20
and a risky prospect that pays Rs 40 if a blue bead is drawn and Rs 10 if a green bead is drawn. The
expected utility difference between the risky prospect and the sure payment in round t is expressed as
z(t) = S(t)u(40)+(1−S(t))u(10)−u(20), where S(t) is the individual’s subjective probability of drawing
a blue bead in round t and u(t) is the utility function, with isoelastic functional form exhibiting CRRA. We
estimate the likelihood function using the risk aversion coefficient from the risk experiments defined
previously.

Learning Rules

Individual learning processes are used to inform the farmers subjective value for S(t), where each learning
process corresponds to a weighting function that defines the weight of the ith draw of t total draws. Then
the player’s latent and intrinsic weighting will define the learning rule for each set of choices over t draws.
While the nature of the experiment and environment are context specific, the literature on learning
provides a variety of learning rules that individuals may employ (cf. Gans et al. 2007). To examine
different learning processes, we follow the approach used by Barham et al. (2015) and specify four
potential models for learning that have legacies in psychological studies of learning patterns. We refer to
these four learning processes as Bayesian learning, impressionable learning, reactionary learning, and
myopic updating. These learning rules are described in greater detail below.

Consider Bayesian learning, in which information from all rounds is weighted equally and
farmers’ subjective probability updates in each round given new information. The Bayesian subjective
probability of drawing a blue bead in round tk is therefore

S(tk) =
1
tk

tk

∑
t=1

Bt .
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In contrast, under impressionable learning, farmers consider only the ratio of blue beads to total
beads from the first n rounds when making all of their subsequent choices. We refer to this model of
learning as “impressionable” because it reflects the strength of first impressions, in which additional
information revealed after the nth round is essentially ignored. In the extreme case, individuals’ beliefs
about the distribution are influenced by information revealed in the first–and only the first–round. Under
this rule, the impressionable subjective probability in round t is given by

S(t) = B1.

These are farmers who overweight their initial information and form strong beliefs based on their first
impressions, forgoing any future learning.

Similarly, last-n learners neglect all of their previous information in favor of only the most recent n 
draws. These farmers may be characterized as having short memories or attention spans, or may simply 
choose to neglect information beyond the most recent n experiences because updating using this relatively 
distant information may be tedious and error prone. Again, in the extreme, individuals may attend only to 
the most recent information revealed, ignoring any other information that had previously been revealed. 
The subjective probability in round t based on this “reactionary” learning style is given by

S(t) = Bt .

Finally, the myopic updating learning rule is similar to last-n in that it considers only information
from the most recent n rounds, but it differs in that it uses a simple classification of draws into “good” and
“bad.” Draws with four or five blue beads are considered “good” while draws of three or fewer blue beads
are “bad.” Farmers characterized by myopic updating both overweight only the most recent n rounds of
information and do not fully consider the probabilities over which they are making their choices. The
corresponding subjective probability weights are

S(t) =

{
1 “good” draw
0.5 “bad” draw.

Upon calculating these probabilities for each individual, we can fit and evaluate the models based on the
Bayes information criterion (BIC), which equals −2∗LL using the calculated logit log-likelihood. We
rank each learning rule using the BIC, such that the first-best learning rule (that is, the learning rule that
most accurately reflects the observed behavior) has the lowest BIC, the second-best learning rule has the
second-lowest, and so on. Occasionally, learning rules may have equivalent BIC rankings if the sequence
of draws decisions, or both is similar. When describing the distribution of these learning rules we include
ties between rules in each of the rules’ respective totals. After classifying individuals according to their
first-best learning rules, we estimate a multinomial logit model (excluding ties) across the possible first
best-rules to determine whether literacy, age, caste, and evaluated comprehension of the learning
experiment are determinants of particular learning rules. Finally, we model the usage of hybrid rice in
2013 as a function of learning rules and individual characteristics that potentially impact adoption to
investigate which learning rules encourage or prevent adoption.
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4. RESULTS

Table 4.1 provides household summary statistics for the full sample that participated in the learning 
experiment and for whom we have complete information about their inputs, along with the subsamples of 
farmers for whom the elicited risk aversion coefficient was finite and those for whom it was infinite.4
Column (4) includes t-tests of the difference between the finite and infinite risk aversion sa mples. Of the 
farmers who participated in the survey in 2013, nearly one-third (124) had an infinite risk aversion 
coefficient in the risk e xperiment. Farmers with a finite risk aversion coefficient had a mean risk aversion 
coefficient of 0.61, indicating a modest degree of risk a version. This level of risk aversion is similar to the 
estimates reported by Binswanger (1981), also from India, though with a slightly different elicitation 
method. The Binswanger (1981) estimate of 0.71 suggests that the farmers in his sample from semiarid 
tracts of Maharashtra and Andhra Pradesh were slightly less risk averse than the farmers in our sample in 
Bihar. Furthermore, the estimated risk aversion coefficients reported here are roughly consistent with those 
reported by Cardenas and Carpenter (2008) from many other contexts around the globe. The mean risk 
aversion coefficient here is slightly lower than those reported by Barham et al. (2015) for Minnesota and 
Wisconsin farmers (0.77) using a virtually identical preference elicitation mechanism. When generating 
the likelihoods for risk-averse farmers in the following analysis, we exclude those with infinite risk 
aversion coefficients because we are unable to calculate their utility without using an arbitrary value. 
While this represents a large portion of the sample, as shown in Table 4.1 they differ primarily in caste 
makeup and evaluated comprehension of the learning experiment.

4As previously stated, the risk aversion coefficients elicited through the experimental procedure documented above fell 
within an interval. To operationalize analysis, we assumed that an individual’s coefficient of risk aversion was the value at the 
upper limit of this interval. This implied that some individuals (that is, those individuals who preferred the riskless option in first 
round as report in Table 3.1) were assigned an infinite coefficient of risk aversion. Given that the expected value of the lottery 
is Rs 30 and, even with a “losing” draw, the lottery payout would be no less than the riskless option, individuals choosing the 
riskless option clearly displayed considerable aversion to risk. Whether it is fair to characterize these individuals as infinitely risk 
averse is debatable. Yet it is also not straightforward to study their information processing strategies under such extreme 
preferences.
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Table 4.1 Summary statistics for full sample and finite constant relative risk aversion sample

(1) (2) (3) (4)

Characteristic
Finite risk Infinite risk 

Full sample aversion sample   aversion Difference

47.46 45.92 −1.535
(13.0) (12.5) (13.79) (1.271)
0.96 0.98 0.94 −0.036∗
(0.20) (0.15) (0.24) (0.018)
0.70 0.71 0.66 −0.055
(0.46) (0.45) (0.48) (0.045)
0.44 0.46 0.40 −0.060
(0.50) (0.50) (0.49) (0.048)
0.51 0.48 0.58 0.101∗∗
(0.50) (0.50) (0.50) (0.048)
0.04 0.06 0.02 −0.041∗∗
(0.21) (0.24) (0.13) (0.020)
0.31 0.37 0.21 −0.159∗∗∗
(0.46) (0.48) (0.41) (0.044)
0.43 0.41 0.46 0.048
(0.50) (0.49) (0.50) (0.048)
0.22 0.20 0.27 0.073∗
(0.42) (0.40) (0.44) (0.04)

Age

Gender (male=1)

Can read and/or write 

Comprehension: good 

Comprehension: moderate 

Comprehension: poor 

General caste

Other backward caste 

Scheduled caste

Scheduled tribe 0.03 0.02 0.05 0.037∗∗
(0.17) (0.13) (0.23) (0.017)

46.90



(1) (2) (3) (4)

Characteristic
Finite risk Infinite risk 

Full sample aversion sample aversion sample Difference
0.03 0.03 0.02 −0.016

(0.17) (0.18) (0.13) (0.016)
65.06 65.21 64.80 −0.403

(11.42) (11.06) (12.07) (1.119)
65.35 65.54 65.02 −0.512
(7.70) (7.65) (7.78) (0.753)
0.14 0.15 0.13 −0.016

(0.35) (0.36) (0.34) (0.034)

Access to credit (2013) 

Blue ratio (actual)

Blue ratio (guess) 

Cultivated hybrid rice (2013) 

Risk aversion coefficient 0.61
(0.58)

451 287 164

Rankings of Learning Rules

We begin by providing rankings of the first-, second-, and third-most-likely learning rules for the entire 
sample under the assumption of risk neutrality. These are reported in panel (a) of Table 4.2. Due to 
potential similarities between the weighting functions, we have included ties between rules in both of the 
corresponding rows. Ties occurred only for first-best rule and were rare, with only one tie in the
risk-neutral case and three ties in the risk-averse case. These results suggest that the most common 
learning rules are the myopic updating and impressionable learning rules, so that farmers either are 
reactive to good draws or largely base their subsequent decisions on the first round, implying that first 
impressions are important to many farmers in the sample. Somewhat surprisingly, Bayesian learning is a 
more common first ranked learning rule than reactionary learning, and is the most common second-best 
rule. From this top panel of Table 4.2, it is clear that there is substantial heterogeneity in the learning rules 
used by farmers in Bihar, in both their complexity and their timing (initial versus recent information). 
Despite the low levels of education in the sample, the prevalence of Bayesian learning suggests it may not 
be a bad approximation for belief updating even in rural villages in developing countries.

Source:  Authors.

Table 4.1 Continued

Table 4.2 Ranking of learning rules

Sample and learning rule
(1) (2) (3) 

First Second Third
(a) Full sample, risk neutral

18.4 41.7 24.6
33.5 21.1 14.2
14.9 18.8 40.4

Bayesian learning
Impressionable learning
Reactionary learning
Myopic updating 33.5 18.4 20.8

(b) Finite risk aversion sample, risk neutral
17.8 39.4 24.4
28.9 21.6 17.4
16.0 20.2 37.3

Bayesian learning
Impressionable learning
Reactionary learning
Myopic updating 37.6 18.8 20.9

(c) Finite risk aversion sample, risk averse
25.4 39.7 25.4
39.0 11.1 9.1
15.3 31.7 33.4

Bayesian learning
Impressionable learning
Reactionary learning
Myopic updating 21.3 17.4 32.1

Source:  Authors.
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Notes:    * Significant at 10% level; ** significant at 5% level; *** significant at 1% level. Standard deviations in parentheses in
 columns 1–3, Standard errors in parentheses in column 4.

Observations



The rankings of risk-neutral and risk-averse learning rules using the limited subsample of farmers 
with a finite risk aversion coefficient are provided in panels (b) and (c), respectively, of Table 4.2 
Surprisingly, the exclusion of farmers with infinite risk aversion does not change the rankings of learning 
rules under the assumption of risk neutrality relative to the sample in panel (a). Specifically, we still 
estimate myopic updating and impressionable learning to be the most prevalent first-best learning rules. 
However, there are slight differences between the rankings when allowing for risk aversion in the utility 
functions used in the estimation of the learning rules. As before, fewer farmers exhibit reactionary learning 
as their first learning rule assuming risk aversion, though this rule may be of secondary or tertiary import, 
as shown by the increasing frequencies in columns (2) and (3). Notably, while impressionable learning is 
still prominent (used by nearly 40 percent of the sample), the number of Bayesian farmers (25 percent) is 
slightly higher than those relying upon myopic updating (21 percent), though if we consider reactionary 
and myopic-updating learners to be indicative of those with a present bias in their learning, then Bayesian 
learning is less common than relying upon first impressions or having present biases (36 percent). The fact 
that myopic updating is more prevalent than reactionary learning, despite the fact that both are biased 
toward recent observations, suggests that farmers in our sample are more likely to rely upon recent 
information if it provides a promising signal.
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Determinants of Learning Rules

Next, we investigate whether observable farmer characteristics are correlated with particular learning rules.
To do this, we estimate a series of multinomial logits under different sample specifications. Multinomial
logit analysis generalizes logit regression to a multiclass setting, essentially allowing the analyst to
estimate the marginal contribution of a series of covariates to the probability of a series of outcomes that
are generally–though not necessarily–mutually exclusive. We include a set of covariates that may influence
the individual’s utilization of a particular learning rule.5 Specifically, we include controls for age, gender,
literacy, caste, and the enumerators’ evaluations of how well respondents understood the rules and
structure of the experiments. The age controls act as a proxy for experience and wisdom, which may affect
the farmer’s learning rule through patience or years of experience with learning processes. Previous
studies have found gender differences in the choice of learning rules, which could be the result of innate or
social factors that contribute to differences in how men and women either complete the learning
experiment or otherwise process information (Barham et al. 2015; Gans et al. 2007). Formal education is
relatively low in rural Bihar, particularly among the current generation of adults, though there is variation
in the literacy level between farmers. Literacy may contribute to higher-level information processing that
carries over into learning about distributions over time. Given the low level of education, enumerator
evaluations of respondents’ comprehension provide ancillary controls for intelligence and comprehension
that are not accounted for with literacy.

The first set of results in Table 4.3 are for the full sample under the assumption of risk neutrality. 
The coefficients for reactionary learning and myopic updating suggest that evaluated comprehension is 
correlated with an individual’s most likely learning rule, meaning that those with poor comprehension are 
much more likely to use either reactionary learning or myopic updating than Bayesian updating, with 
relative log odds ratios of 1.7 and 3.6, respectively. Similarly, farmers with only moderate comprehension 
are more likely to follow myopic updating than Bayesian updating (odds ratio of 1.05), but are less likely 
to adhere to either impressionable learning (odds ratio 0.71) or reactionary learning (odds ratio 0.50). 
When we use comprehension of the experiment as a proxy for intelligence, we find that those with lower 
comprehension exhibit more reactionary responses to favorable draws and are less likely to follow 
Bayesian updating or use the most recent draws to inform their belief updating. Generally, there is 
considerable unexplained variation in the choice of learning rules under risk neutrality after controlling for 
experience, gender, and potentially weak proxies for intelligence.

5We exclude the one farmer with a tie in his first-best rule so that the rules are mutually exclusive.



Table 4.3 Multinomial logit relative odds ratios: Determinants of first-best learning behavior

Source: Authors.
Notes:  * Significant at 10% level; ** Significant at 5% level; *** Significant at 1% level. Standard errors adjusted for clustering at the village level. Bayesian 

 learning is the reference category in all regressions. Caste effects are relative to general caste. Comprehension effects are relative to understanding well. Ties 
 amongst most likely learning rules not included.
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Full sample, risk neutral Finite risk aversion sample, risk neutral Finite risk aversion sample, risk averse

Vari
ables

Impressionable
         Myopic   

Reactionary    updating

Age

1.003 1.011 1.006 1.015 1.026 1.016 1.020 1.022 1.022

(0.009) (0.013) (0.012) (0.016) (0.017) (0.017) (0.016) (0.020) (0.017)

Male

0.439 0.803 0.531 0.306 0.339 1.709 1.405 1.811 0.475∗∗∗

(0.424) (0.815) (0.425) (0.450) (0.466) (2.746) (1.266) (2.637) (0.456)

Can read and/or write 1.258 0.696 1.156 1.775 1.333 2.071∗ 1.032 0.750 0.771

(0.364) (0.249) (0.374) (0.721) (0.630) (0.843) (0.422) (0.384) (0.360)

Other backward caste 1.016 0.571 0.711 0.859 0.560 0.518 0.468∗∗ 0.489 0.220∗∗∗

(0.282) (0.202) (0.256) (0.353) (0.274) (0.234) (0.171) (0.187) (0.086)

Scheduled caste/tribe 0.958 0.825 0.619 0.805 0.530 0.420∗ 0.813 0.796 0.686

(0.447) (0.439) (0.268) (0.431) (0.328) (0.220) (0.315) (0.403) (0.387)

Comprehension: moderate 0.706 0.495∗ 1.051 0.680 0.562 1.179 0.985 0.965 1.645

(0.176) (0.191) (0.277) (0.257) (0.277) (0.387) (0.329) (0.460) (0.584)

Comprehension: poor 0.248 1.689 3.637∗ 7.44 × 10−7∗∗∗ 1.769 4.184∗ 0.779 1.84 × 10−7∗∗∗ 0.300

(0.310) (1.694) (2.708) (6.56 × 10−7) (1.828) (3.270) (0.436) (1.22 × 10−7) (0.281)

Constant

3.660 1.374 2.759 2.467 1.186 0.477 0.663 0.263 1.36 × 10−7∗∗∗

(3.033) (1.335) (2.252) (3.421) (1.828) (0.732) (0.636) (0.423) (1.54 × 10−7)
450 286 284Observations

Log pseudo likelihood -581.853 -362.179 -361.580

 
         Myopic 

Impressionable  Reactionary  updating

 
            Myopic 

Impressionable  Reactionary     updating



The second set of estimates in Table 4.3 are the multinomial logit estimates under risk neutrality 
for the subsample of farmers who have a finite risk aversion coefficient. Despite the similarities in the 
distribution of learning rules and household characteristics, there are evident differences in the 
determination of learning rules. Surprisingly, the relative log odds of myopic updating as opposed to 
Bayesian learning increase by 2 for farmers who can read, write, or both implying that literacy does not 
seem to increase the likelihood of using more computationally intensive learning rules. Being a member of 
a scheduled tribe or scheduled caste increases the likelihood of myopic updating, but caste does not seem 
to have robust effects across samples under risk neutrality. Farmers with poor comprehension are much 
more likely to learn according to myopic updating, with relative log odds of 4.18, and slightly more likely 
to be impressionable learners.6 Taking comprehension as a current measure of intelligence, we find that 
farmers with lower evaluated comprehension are more likely to use computationally simple updating rules 
when making decisions, assuming risk neutrality.

Finally, the third set of estimates in Table 4.3 are the multinomial logit estimates for the 
subsample of farmers with finite risk aversion, where we estimate learning rules allowing for individuals 
to exhibit risk aversion. Across impressionable, reactionary, and myopic updating learning, we find that 
members of other backward castes are more likely to use Bayesian updating (odds ratios of 0.47, 0.49, 
and 0.22, respectively). Farmers with poor comprehension of the experiment are considerably less likely 
to be reactionary learners, suggesting that lower comprehension is not necessarily associated with reactive 
responses to draws.

Accuracy of Learning Rules

After identifying the rankings and determinants of learning rules, we investigate whether particular 
learning rules are better predictors of individuals’ estimation of the number of blue beads in the bag. 
Recall that prior to learning the true number of blue beads in the bag, farmers were asked to guess how 
many they believed were in the bag and were awarded 5 extra rupees if their guess was within 2 of the 
actual number. The true number of blue beads in the bag was 72, but farmers observed only a sequence of 
subsamples over 15 draws (including the practice round). To analyze how accurate farmers were in their 
estimates, we calculate the absolute difference between their guesses and the average of the total draws 
that they observed. Then we multiplied this average by 100 to produce a value on the same scale as the 
guess. In other words, if an individual observed 57 blue beads during the course of the experiment, then 
considering there were 75 total beads drawn, the average number of blue beads observed was 0.76. Based 
on these observations, an individual might reasonably expect that there are 76 blue beads in total in the 
bag. These absolute differences are illustrated in Figure 4.1. We estimate a simple linear regression model 
with this absolute difference as the dependent variable, conditional on the learning rules and individual 
characteristics used previously. Village fixed effects are included to control for differences across villages 
at the time of the survey and potential sharing of the correct number of blue beads among village 
members. 

6While the relative odds ratio is statistically significant with very low probability of type I error, the effect is so small as to likely
not be a particularly relevant determinant of learning behavior.
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Figure 4.1 Accuracy of guesses: Absolute difference between guess and revealed draws
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Source:  Authors.
Notes:    * Significant at 10% level; ** significant at 5% level; *** significant at 1% level. Robust standard errors in 

 parentheses. Bayesian learning is the reference category in all regressions. Comprehension effects are relative to  
understanding well. Ties among most likely learning rules not included. All regressions contain intercepts; controls for 
caste, access to credit, age, gender, and literacy; and village fixed effects.
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Results are provided in Table 4.4. The first column shows the risk-neutral learning rules for 
the full sample, the second column shows the risk-neutral learning rules for the subsample with finite 
risk aversion, and the third column shows the risk-averse learning rules for the subsample with finite 
risk aversion. Bayesian learning is the excluded rule in all three columns. Myopic-updating learners 
perform significantly worse in their guesses than Bayesian learners regardless of the subsample or risk 
aversion, with the average guess nearly 3 beads further away from the actual number of blue beads 
compared with Bayesian learners’. Given that myopic updating learners base their beliefs on 
promising signals (that is, they rely on information from a draw only if 4 or 5 blue beads drawn), this 
likely leads to overestimation of the number of blue beads, because their mean posterior belief is on 
the order of 80 blue beads or more. In contrast, reactionary learners perform significantly better than 
Bayesian learners. Reactionary learners’ guesses, on average, are nearly 4 beads closer to the actual 
amount than Bayesian learners’. We note that there is little evidence to suggest that, after controlling for 
individual learning rules, perceived comprehension affects performance in guessing the actual number of 
blue beads. Across all three regressions, those individuals who did not appear to fully comprehend the 
game performed no worse than those who did.



Table 4.4 Difference in guess from revealed probability in learning game

Finite risk Finite risk
Full sample, aversion sample,  aversion sample,

Characteristic risk neutral         risk neutral risk averse

Impressionable −0.690 −0.479 −0.454
(1.138) (1.460) (1.463)

Reactionary −3.804∗∗∗ −4.079∗∗∗ −4.075∗∗∗

(1.310) (1.560) (1.562)
Myopic updating 3.000∗∗∗ 3.052∗∗ 3.094∗∗

(1.139) (1.431) (1.441)
Comprehension: moderate 1.115 1.301 1.339

(0.767) (1.004) (1.010)
Comprehension: poor −0.613 0.964 0.983

(1.840) (2.156) (2.158)

Observations 450 286 284
R2 0.152 0.222 0.221

Finally, we investigate the relationship between learning rules and the decision to adopt a new agricultural 
technology, specifically hybrid r ice. In many ways, rice hybrids represent the next generation of the Green 
Revolution. Particularly in light of the world food price crisis in 2007-2008, many developing countries 
have shown increasing interest in finding solutions to increase productivity growth to ensure food security, 
and there are hopes that hybrid rice might be one such solution (Spielman et al. 2013, forthcoming). 
Previous research suggests that hybrids have had a significant effect on improving livelihoods and food 
security in several developing countries–most notably China–where rice is the principal food grain (for 
example Lin and Pingali 1994; Janaiah et al. 2002). Hybrids can contribute to increased food security both 
for producers (through higher productivity, resulting in increased own-consumption as well as larger 
marketable surpluses, which in turn results in higher farm incomes) and for consumers (because the 
increased quantity of rice on the market results in lower and more stable prices). Hybrids typically have 
considerably higher yields than conventional inbred varieties–even later generations of modern,
high-yielding varieties arising from the Green Revolution. Much of these higher yields can be attributed to 
heterosis–the increase in the vigor of the rice crop resulting from the genetic contributions that result from 
crossing distinct parental lines. Not only does heterosis typically confer higher yields, but it also leads to a 
significant increase in genetic uniformity, which translates into an economic benefit through a lower seed 
rate needed to cultivate a given area (typically about one-third).

Despite these benefits, rice hybrids are not without significant downsides. Perhaps the most 
glaring disadvantage is the significantly higher seed price (on the order of about 10 times the price of 
modern varieties). Although partially offset by the lower seeding rate, this higher seed price–in 
conjunction with increased expenditures on complementary inputs like fertilizer and irrigation–still 
typically results in higher operational costs for hybrid rice production compared with cultivating modern 
varieties. Furthermore, yields and genetic uniformity decline dramatically after the first generation of seed 
(F1). There is therefore no benefit to farmers to save and store harvested grains to use as seed in 
subsequent seasons. Rather, farmers must typically purchase new F1 seed on a continual basis if they wish 
to avail themselves of the benefits of hybrids.
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Learning and Technology Adoption

Source: Authors.
Notes:   * Significant at 10% level; ** significant at 5% level; *** significant at 1% level. Robust standard errors in parentheses. 

Bayesian learning is the reference category in all regressions. Comprehension effects are relative to understanding  
well. Ties among most likely learning rules not included. All regressions contain intercepts; controls for caste, 
access to credit, age, gender, and literacy; and village fixed effects.



We estimated the decision to use hybrid rice on any of the farmers’ rice plots during kharif 2013 
using a simple probit model conditional on the different learning rules and other covariates. Access to 
credit is included as a covariate in this model because it can alleviate cash constraints and allow farmers 
to purchase the more expensive hybrid seeds. Results from estimating this probit model using maximum 
likelihood are reported in Table 4.5. As before, columns (1) and (2) show learning rule estimates under 
the assumption of risk neutrality, using the full sample and the subsample of farmers with finite risk 
aversion, respectively. Column (3) shows the learning rules estimated with risk aversion. Village fixed 
effects are included to control for variations within the village that may affect the decision to use hybrid 
rice during kharif 2013. The sample size decreases by nearly half when we include village fixed effects 
due to many of the villages’ having no adoption.

Table 4.5 Probability of cultivating hybrid rice in kharif, 2013

Finite risk Finite risk
Full sample, aversion sample, aversion sample,

Characteristic risk neutral risk neutral risk averse
Impressionable −0.440 −0.675 −1.551∗∗∗

(0.286) (0.430) (0.417)
Reactionary −1.442∗∗∗ −2.079∗∗∗ −1.982∗∗∗

(0.432) (0.601) (0.482)
Myopic updating −0.0483 −0.189 −0.584

(0.302) (0.400) (0.493)
Credit 0.706 1.425∗ 2.110∗∗∗

(0.619) (0.774) (0.621)
Understands ok −0.423∗ −0.166 −0.385

(0.224) (0.326) (0.341)
Understands poorly −0.527 −0.218 −1.308∗∗

(0.602) (0.723) (0.641)

Observations 233 136 136

Source: Authors.
Notes:  * Significant at 10% level; ** significant at 5% level; *** significant at 1% level. Robust standard errors in parentheses. 
              Bayesian learning is the reference category in all regressions. Comprehension effects are relative to understanding well. 

 Ties among most likely learning rules not included. All regressions contain intercepts; controls for caste, access to credit, 
  age, gender, and literacy; and village fixed effects.
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Nevertheless, the government of India has set ambitious targets to increase the area under hybrid 
rice. The National Food Security Mission set a goal to increase the area under hybrid rice to as much as 25 
percent of all cultivated rice area by 2015, up from only about 6 percent in 2008–2009 (Spielman et al. 
2012). As with any relatively new technology, however, farmers’ ultimate decision to adopt hybrids 
depends crucially on subjective beliefs about the profitability of cultivation and on the ways in which 
farmers formulate their beliefs and update them with exposure to new evidence. From the summary 
statistics reported in Table 4.1 we see that some farmers in our sample have adopted rice hybrids, but the 
expansion is far from complete, with only 15 percent of farmers having adopted. We do not have a 
complete history of hybrid crop usage, so unfortunately we are unable to focus on the timing of the 
decision. Thus, our estimation of the effects of different learning rules on hybrid adoption includes only a 
snapshot of “earlier adopters” and potential determinants of adoption.



Unsurprisingly, credit access is positively correlated with early adoption of hybrid rice for the 
subsample of farmers with finite risk aversion coefficients. Farmers with lower evaluated comprehension 
in the experiment–which may be a reasonable proxy for intelligence–are less likely to be early adopters of 
rice hybrids, implying that current intelligence, as opposed to educational attainment, may be correlated 
with adoption, independent of learning processes.
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Across all three columns in Table 4.5, we observe that farmers characterized by reactionary learning
in the learning experiment are less likely to be early adopters relative to Bayesian learners. Thus, farmers
who have more present-biased learning processes (reactionary learning) are less likely to be early adopters
even after controlling for farmer comprehension, which was previously shown to be negatively correlated
with reactionary learning. When learning rules are estimated assuming risk aversion–column (3)–we find
that impressionable learners are similarly less likely to adopt hybrid rice than are Bayesian learners. These
farmers rely upon first impressions, so they may be heavily influenced by the high up-front cost of hybrid
seeds. The fact that Bayesian learners are generally more likely to adopt hybrids than those who rely upon
other learning rules is not terribly surprising. With new technologies, including new seeds, there is
typically a process of tinkering and making marginal adjustments to learn about the appropriate use of both
the technology and it’s complementary inputs. Bayesian learners are much more suited for this type of
process than either those who are present biased or those who rely upon first impressions. But Bayesian
learning is also considerably more cognitively taxing, requiring a much longer memory and a more
complex updating process. It is not surprising, therefore, that most farmers within our sample rely on less
complicated learning rules. But the fact that more than 25 percent of the farmers in our sample rely upon
Bayesian learning as a first-best description of their learning process suggests that models assuming such
learning may provide reasonable predictions and testable hypotheses about farmer behavior, even in rural
settings in developing countries like India.



5. CONCLUSION AND DISCUSSION

This paper has used experimental methods to identify various processes by which farmers in rural Bihar
formulate and process information. The results suggest that there is a great deal of heterogeneity in
farmers’ learning heuristics, both in complexity and in the way they rely upon initial versus recent
information. Generally speaking, the results suggest that farmers in the sample tend to either rely upon
first impressions or react to recent information, but they are more likely to act upon recent information if it
provides a promising signal as opposed to a simple, ambiguous message. Despite this tendency, however,
roughly a quarter of the farmers in the sample can best be described as Bayesian learners, those who use
each past observation to inform posterior beliefs. This is an interesting finding, given the cognitive tax that
such processing imposes. But given that researchers often assume Bayesian learning processes in models
of technology adoption, these results suggest that such models may provide reasonable predictions about
farmer behavior.

The heterogeneity in learning patterns that we observe are rather difficult to ascribe to observable
individual characteristics. In some ways, this suggests that learning rules are intrinsic to unique individuals
and are not systematically determined by gender or age or, with some exceptions, caste. But we find
convincing evidence that the nature of learning does impact technology adoption, with Bayesian learners
typically much more likely to adopt hybrid rice than those characterized by impressionable or reactionary
learning.

What do these results imply for Indian agricultural policies, particularly around hybrid rice, which
the Indian government views as an important technology in its plans to increase food security? The results
suggest a continued need for formal financial integration in rural India, because access to credit
significantly increases adoption of hybrid rice and likely has similar effects with other agricultural
technologies. Furthermore, given the heterogeneity in learning rules observed in our sample, efforts to
promote hybrids (or likely any new technology) will probably require a more nuanced approach, rather
than a one-size-fits-all extension message. For individuals who adhere to first impressions, messages and
demonstrations will most likely have to exhibit an immediate impact. The same can largely be said for
those with a present bias, but these learners would be more likely to forgive earlier failures if they are
followed up by promising signals. Unfortunately, given the idiosyncratic nature of learning that we
observe, it will be difficult to prescribe the appropriate message for an individual farmer based solely on
observable characteristics. Identifying appropriate messaging strategies to satisfy the needs of different
learners may be a fruitful avenue of future research.
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