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1 Part 1: Observations and reanalyses data: comparison and trends 

Reanalyses data sets, being temporally and spatially complete and available on six hourly 

timescales, are extremely convenient to use. Real observations represent the climate system with 

greater fidelity than reanalyses can, given that the latter are a complicated blend of observations and 

models via an assimilation scheme and rely heavily on the assimilation scheme where observations 

are absent. Knowing whether the reanalyses data reflects real data can be difficult to establish. In 

this part of the report, the observed data is compared with three reanalyses data sets for the SE Asia 

region. We use observations from SYNOP and METAR reports. SYNOP and METAR data are, in 

effect, observations taken at met stations and delivered to the Global Telecommunication System 

(GTS). Once in the GTS, they can be archived by institutions such as those delivering weather 

forecasts. Access to these data via the archives is generally much easier than through the individual 

Met Agencies. This is particularly true in the case of a study covering multiple nation states. These 

datasets are described in more detail in Sections 1.1 and 1.2.  

1.1 Methods 

This section provides an overview of the data and data processing. 

Surface observations and data processing 

Basic measurements made at meteorological stations all over the world are distributed through 

surface synoptic observations (SYNOP) and météorologique aviation régulière (METAR) reports. 

SYNOP reports generally include more variables than the METAR reports which are distributed 

primarily for the aviation industry. The UK Meteorological Office compiled SYNOP and METAR 

reports in the Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface 

Stations Data (1853-present) archive. We use data from the MIDAS Global Weather Observations 

(GL) table which includes 3-hourly observations from global non-UK stations from 1974 to present 

(http://badc.nerc.ac.uk/data/ukmo-midas/GL_Table.html).  

The observation period, as well as the frequency of observations, varies significantly between 

stations and may vary significantly over time. Basic quality control is performed by the observer at 

each station before the data are transmitted as SYNOP or METAR reports. Before the data are 
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included in the MIDAS archive, they undergo a range of quality checks outlined in the 'Met Office 

Surface Data User Guide' Section 7 (http://badc.nerc.ac.uk/data/ukmo-midas/ukmo_guide.html).  

In order to derive a consistent, quality assured dataset, the SYNOP and METAR data were further 

processed in the following way. At stations where observations from both SYNOP and METAR 

reports were available for the same observation time, the observations from the SYNOP report were 

used in preference to METAR because SYNOP observations are more frequent then METAR 

observations (thereby keeping the dataset as consistent as possible). Gaps in the SYNOP 

observation times were substituted by METAR observations where possible to make observations 

as complete as possible. Although for some stations 3-hourly observations are available, we only 

use observations made at the synoptic hours (00, 06, 12 and 18 UTC). All mean sea-level pressure 

(MSLP), air temperature at 2m (T2m) and wind speed at 10m (WSPD10m) observations between 1 

January 1989 00:00 UTC and 31 December 2009 18:00 UTC  were extracted. 

 

Reanalyses (ERAI, CFSR and MERRA) 

Surface observations from SYNOP/METAR of mean sea-level pressure, air temperature at 2m and 

wind speed at 10m are compared with the corresponding fields of three reanalysis datasets. For this 

comparison, fields for three reanalysis datasets were obtained in 6-hourly time steps (00, 06, 12 and 

18 UTC) between 1 January 1989 and 12 December 2009. This 21 year period was chosen because 

all three reanalyses are available for this period.  

European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERAI) [Dee 

et al., 2011] full resolution global fields were obtained from the ECMWF website (http://data-

portal.ecmwf.int/data/d/interim_full_daily). The fields are available in netCDF format and in 

0.703125° by 0.703125° spatial resolution. For the trend analysis, the MSLP, T2m, WSPD10m and 

total precipitation fields were obtained for the whole ERA-Interim period 1 January 1979 to 31 

December 2012. Whereas MSLP, T2m and WSPD10m are available as reanalysis fields, total 

precipitation is only available as 3-hourly forecast fields with forecasts being initialised at 00 and 

12 UTC every day. 
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A subset of the reanalysis domain covering SE Asia was extracted from the National Aeronautics 

and Space Administration (NASA) modern-era retrospective analysis for the research and 

applications (MERRA) dataset [Rienecker et al., 2011] and was obtained from the Goddard Earth 

Sciences Data and Information Services Center (GES DISC) website 

(http://disc.sci.gsfc.nasa.gov/daac-bin/FTPSubset.pl). We use the SLP (Sea level pressure), T2M 

(Temperature at 2m above the displacement height) and U10M/V10M (Eastward/Northward wind 

at 10m above displacement height) fields of the 'IAU 2d atmospheric single-level diagnostics 

(tavg1_2d_slv_Nx)' product. The fields are available in netCDF format and come in a 2/3° 

longitude by 0.5° latitude resolution.  

The National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis 

(CFSR) fields [Suranjana et al., 2010] for MSLP, air temperature at 2m as well as U and V wind 

components at 10m were obtained through the National Oceanic and Atmospheric Administration 

(NOAA) National Operational Model Archive & Distribution System (NOMADS, 

ftp://nomads.ncdc.noaa.gov/CFSR/HP_time_series/). The MSLP field is available at a resolution of 

0.5° by 0.5° whereas the 2m air temperature and 10m wind speed fields are 0.3125° by 0.3125°. 

Station selection and minimum data availability thresholds 

There are normally many missing variables in the SYNOP/METAR data set and the number of 

observations available for the period 1989 to 2009 varies between stations, synoptic hours and 

variables. In order to deal with this, a minimum data availability threshold of 400 observations over 

the record 1989-2009 was chosen for a station to be included in this analysis. For the analysis of the 

seasonal statistics, this threshold was lowered to a quarter of 400 (n=100). These thresholds were 

chosen as a compromise that allows a large enough sample for statistical analysis while maintaining 

a reasonably good spatial coverage.  

Figures 1.1 to 1.6 show the spatial distribution of stations with T2m measurements for each 

synoptic hour when thresholds of 6 (n=460), 10 (n=767), 20 (n=1533), 30 (n=2300), 40 (n=3066) 

and 50% (n=3833) minimum data availability are applied, respectively. The relatively low 

minimum data availability threshold of 400 observations was chosen so that Cambodia and western 

Indonesia (Papua) are represented in the analysis. Cambodia is the country with the least number of 



5 
  

observations (<500). The 400 observations threshold is justifiable because when comparing the 

station availability for the different thresholds (Figures 1.1 to 1.6), it becomes evident that 

increasing the threshold to 20% does not significantly change the station distribution apart from 

over Cambodia and for one station in the centre of Papua, Indonesia. Only for thresholds larger than 

20% (e.g., 30, 40 and 50%, Figure 1.4, 1.5 and 1.6) do larger gaps in the station availability become 

apparent, especially in Indonesia. 
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Figure 1.1 Spatial distribution of stations with a minimum data availability threshold of 6% for 2m temperature for the 

period 1989 to 2009 
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Figure 1.2 Spatial distribution of stations with a minimum data availability threshold of 10% for 2m temperature for 

the period 1989 to 2009. 
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Figure 1.3 Spatial distribution of stations with a minimum data availability threshold of 20 % for 2m temperature for 

the period 1989 to 2009. 
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Figure 1.4 Spatial distribution of stations with a minimum data availability threshold of 30 % for 2m temperature for 

the period 1989 to 2009. 
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Figure 1.5 Spatial distribution of stations with a minimum data availability threshold of 40 % for 2m temperature for 

the period 1989 to 2009. 
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Figure 1.6 Spatial distribution of stations with a minimum data availability threshold of 50 % for 2m temperature for 

the period 1989 to 2009. 
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The distribution of stations for observations at 00, 06 and12 UTC are very similar (e.g., Figure 1.1). 

The number of stations available for statistical analysis drops, however, for observations made at 18 

UTC which corresponds to night time in the South-East Asia domain. See the end of this section for 

a brief discussion of time zones. The number of stations available for analysis does not vary 

significantly between the different variables (not shown). 

As the stations will have different numbers of observations, a meaningful comparison of their 

climatology is difficult. To overcome this problem we extract 400 random samples from the record 

of each station and calculate means based on them. To avoid the chance of accidentally poor 

sampling, we repeat the extraction of 400 random samples 100 times. The 100 means will be 

Gaussian distributed around the ‘true’ mean of the station. Therefore, calculating the mean of them 

will give a more realistic representation of the climatology while still maintaining the same sample 

size at each station. 

Reanalyses comparison 

The SYNOP/METAR observations are compared with the ERA-Interim, CFSR and MERRA 

reanalysis products. The following approach was taken for the comparison. For each observation 

used from the SYNOP/METAR data, the corresponding reanalysis value was extracted by 

interpolating the gridded reanalysis field to the location of the observing station using bilinear 

interpolation. Repeating this process created a record that has the same number of reanalysis values 

as the observations allowing for a one-to-one comparison of the observations and the reanalysis. 

Climatological means were calculated using the same approach as for the observations using the 

same set of random indices as generated for each of the stations.  

 

Spatial interpolation 

The climatological means calculated at each station for the observations as well as all three 

reanalyses have been interpolated spatially using linear interpolation.  

Trend analysis 

The ERA-Interim reanalysis is used to identify trends in climate data between 1979 and 2012 for 
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the SE Asia domain. Trends in climate extremes (5th and 95th percentile), as well as the mean, are 

analysed for MSLP, T2m, WSPD10m and total precipitation.  

For the trend analysis of the percentiles, daily MSLP, T2m and WSPD10m means were calculated 

from the 6-hourly values for the whole period 1979-2012. Based on the daily mean values, the 5th 

and 95th percentile was calculated for each year as well as for each season (DJF, MAM, JJA, JAS 

and SON) yielding a time series of 34 values for each grid box. For precipitation the same approach 

was taken but totals were calculated instead of means. A simple linear regression model was used to 

calculate the slope of the regression line.  

 

For the trend analysis of the monthly means, data were computed from daily means (based on 6-

hourly values). From the monthly means annual and seasonal (DJF, MAM, JJA, JAS and SON) 

means were computed yielding a time series of 34 values for each grid box. Regression was 

computed in the same way as for the percentile trend analysis described above.  

Notes on time zones 

The geographical domain covers four time zones spanning from UTC+6.5 to UTC+9. The times of 

observations in the MIDAS dataset as well as the availability of the reanalysis products are 00, 06, 

12 and 18 UTC. It is important to keep the relationship between observation times at the synoptic 

hours and local time in mind when interpreting the climatological plots for specific synoptic hours. 

Table 1.1 shows the relationship between UTC and local time. 
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Table 1.1: Relationship between GMT and local time 

 

1.2 Analysis of observations: climatology 

This section shows the baseline climatology of the region derived from observations (using linear 

interpolation) for the annual mean (Figure 1.7) and each season DJF, MAM, JJA, JAS and SON 

(Figures 1.8 to 1.12). In each case the climatology is shown for six hourly times (00, 06, 12, 18 

UTC) and therefore resolves the diurnal cycle.  

 

Peak long term annual mean observed temperatures are in Thailand. Topographic effects are evident 

for isolated stations in Myanmar (2 stations at 12 UTC), Sumatra (1 station at 00 UTC) and Papua 

(2 stations show much lower T2m).  

Wind speed maxima occurs at 06 UTC (daytime) and minima at 18 and 00 UTC (night time). 

Strong winds are found along the Vietnamese cost, mainland Malaysia, Java, Sulawesi and Sumatra, 

especially during the daytime. Generally low winds occur in Myanmar and Thailand. Strong winds 

GMT, UTC+0 UTC+6.5 UTC+7 UTC+8 UTC+9 

 Myanmar Laos, Thailand, 

Cambodia, 

Vietnam 

Malaysia, 

Philippines, 

western Indonesia 

eastern Indonesia 

00 UTC 6:30am 7am 8am 9am 

06 UTC 12:30pm 1pm 2pm 3pm 

12 UTC 6:30pm 7pm 8pm 9pm 

18 UTC 12:30am 1am 2am 3am 
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are found at a single station in Laos at 06 UTC (which is likely a local control). Coastal stations 

show in general higher winds.  

Mean annual sea level pressure (MSLP) generally decreases from north to south in DJF and 

reverses in JJA consistent with the monsoon regime which dominates the area. Lowest MSLP 

occurs in Myanmar in JJA. 

  

As expected, surface temperature (T2m) peaks at 06 UTC although the T2m spatial distribution and 

values are similar at 00 and 18 UTC. Temperature differences between seasons are small but DJF 

emerges as the hottest season. Colder temperatures in central Papua reflect topography; there are 

similar effects at other stations. 
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Figure 1.7 1989-2009 long term mean climatology of observed MSLP, T2m and WSPD for 00, 06, 12 and 18 UTC 

employing linearly interpolated between stations. 
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Figure 1.8 1989-2009 long term seasonal mean climatology for DJF of observed MSLP, T2m and WSPD for 00, 06, 12 

and 18 UTC employing linearly interpolated between stations. 
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Figure 1.9 1989-2009 long term seasonal mean climatology for MAM of observed MSLP, T2m and WSPD for 00, 06, 

12 and 18 UTC employing linearly interpolated between stations. 
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Figure 1.10 1989-2009 long term seasonal mean climatology for JJA of observed MSLP, T2m and WSPD for 00, 06, 12 

and 18 UTC employing linearly interpolated between stations. 
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Figure 1.11 1989-2009 long term seasonal mean climatology for JAS of observed MSLP, T2m and WSPD for 00, 06, 12 

and 18 UTC employing linearly interpolated between stations. 
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Figure 1.12 1989-2009 long term seasonal mean climatology for SON of observed MSLP, T2m and WSPD for 00, 06, 

12 and 18 UTC employing linearly interpolated between stations. 
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1.3 Comparison with reanalysis products 

This section compares reanalyses with observations. In subsequent sections, trend analysis is 

applied to the reanalyses data and global climate models are compared with reanalyses. Therefore it 

is useful to establish the bias evident in reanalyses products. 

 

MSLP 

Figure 1.13 shows the reanalyses annual mean MSLP from the three reanalyses compared in this 

study. Figure 1.14 shows the reanalysis minus the observed. CFSR and ERAI are similar with both 

models overestimating MSLP apart from over Borneo and mainland Malaysia. MERRA shows a 

somewhat different picture, mainly under prediction at 00, 06 and 18 UTC and over prediction at 12 

UTC (evening). 

 

T2m 

Figure 1.15 shows the reanalyses annual mean T2m from the three reanalyses compared in this 

study. Figure 1.16 shows the reanalysis minus the observed. All three reanalyses underestimate 

T2m during daytime. The strongest underestimate is for continental countries at 12 UTC. During 

night time a mixed pattern emerges with ERAI and MERRA overestimating T2m at many stations 

in Sumatra, Java, Borneo and mainland Malaysia. Overall, all three reanalyses are similar.  

 

WSPD 

Figure 1.17 shows the reanalyses annual mean T2m from the three reanalyses compared in this 

study. Figure 1.18 shows the reanalysis minus the observed. Spatial distribution of over and 

underestimation are similar for all reanalyses although the magnitude varies. CFSR is closest to 

observations. The largest underestimation of winds is during daytime (06 UTC) in non-continental 

countries. 
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Figure 1.13 1989-2009 CFSR, ERAI and MERRA long term mean reanalysis MSLP for 00, 06, 12 and 18 UTC linearly 

interpolated between stations. 
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Figure 1.14 1989-2009 reanalysis (CFSR, ERAI and MERRA) minus observed MSLP 00, 06, 12 and 18 UTC linearly 

interpolated between stations. 
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Figure 1.15 1989-2009 CFSR, ERAI and MERRA long term mean reanalysis T2m for 00, 06, 12 and 18 UTC linearly 

interpolated between stations. 
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Figure 1.16 1989-2009 reanalysis (CFSR, ERAI and MERRA) minus observed T2m 00, 06, 12 and 18 UTC linearly 

interpolated between stations. 
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Figure 1.17 1989-2009 CFSR, ERAI and MERRA long term mean reanalysis WSPD10m for 00, 06, 12 and 18 UTC 

linearly interpolated between stations. 
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Figure 1.18 1989-2009 reanalysis (CFSR, ERAI and MERRA) minus observed WSPD10m 00, 06, 12 and 18 UTC 

linearly interpolated between stations. 
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Seasonal mean climatologies are included in the following figures for reference, which are found in 

the Appendix. 

MSLP 

DJF: Figure 1.19 (reanalyses) and Figure 1.20 (reanalyses minus obs) 

MAM: Figure 1.21 (reanalyses) and Figure 1.22 (reanalyses minus obs) 

JJA: Figure 1.23 (reanalyses) and Figure 1.24 (reanalyses minus obs) 

JAS: Figure 1.25 (reanalyses) and Figure 1.26 (reanalyses minus obs) 

SON: Figure 1.27 (reanalyses) and Figure 1.28 (reanalyses minus obs) 

T2m 

DJF: Figure 1.29 (reanalyses) and Figure 1.30 (reanalyses minus obs) 

MAM: Figure 1.31 (reanalyses) and Figure 1.32 (reanalyses minus obs) 

JJA: Figure 1.33 (reanalyses) and Figure 1.34 (reanalyses minus obs) 

JAS: Figure 1.35 (reanalyses) and Figure 1.36 (reanalyses minus obs) 

SON: Figure 1.37 (reanalyses) and Figure 1.38 (reanalyses minus obs) 

WSPD10m 

DJF: Figure 1.39 (reanalyses) and Figure 1.40 (reanalyses minus obs) 

MAM: Figure 1.41 (reanalyses) and Figure 1.42 (reanalyses minus obs) 

JJA: Figure 1.43 (reanalyses) and Figure 1.44 (reanalyses minus obs) 

JAS: Figure 1.45 (reanalyses) and Figure 1.46 (reanalyses minus obs) 

SON: Figure 1.47 (reanalyses) and Figure 1.48 (reanalyses minus obs) 

 

1.4 Trend analysis 

Warming in SEA has been similar to the global mean warming (Cruz et al, 2007) with mean 

temperature increasing across South-East Asia since the 1960s at a rate of up to 0.2ºC/decade 

(Tangang et al, 2007).. Extreme rainfall and temperature are thought to have a greater impact on 

crop cultivation than mean climate. In this respect, there is also a reported increase in the frequency 

hot days/warm nights since the mid-20
th

 century (Caesar et al, 2011; Manton et al, 2001). Strongest 

changes are found in the northern regions of SEA in particular, Thailand and Malaysia (Choi et al, 

2009). This suggests the role of local variations in warming, especially the tendency for stronger 
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warming over landmass interiors than coastal regions (McGregor and Dix, 2001). Also, present 

trends in surface air temperature are more pronounced in winter than in summer (Cruz et al, 2007).  

Manton et al (2001) note that whilst generally rainfall has decreased over South-East Asia between 

1961 and 1998, the trend is not statistically significant. Nonetheless, some significant trends were 

found, notably, a statistically significant decrease in the number of rain days over much of the 

domain was found. More recently, other authors have found additional trends in South-East Asian 

rainfall. Lau and Wu (2007) suggest that moderate rainfall events have been decreasing in 

occurrence, with an increase in the amount of heavy and light rainfall events, measuring in the top 

10% and bottom 5% of events respectively.  

 

The analysis undertaken above shows less frequent and more intense precipitation for tropical 

regions, as evident in the HadEX2 dataset (Donat et al, 2013) and other observations (Yao et al, 

2010). A strong increase in extreme precipitation is found between 1951-2010 across all seasons 

and the number of days with at least 2mm of rain has decreased (Manton et al, 2001); although 

responses are regionally variable (Choi et al, 2009; Donat et al, 2013).  

 

Individual regions of South-East Asia have also seen climatic trends. It has been suggested that 

there is a decreasing trend in extreme rainfall events in Myanmar (Chang, 2011). This contrasts to 

the trend over much of the northern region of the domain where extreme events have been 

increasing in frequency. A further regional example is peninsular Malaysia, with contrasting trends 

seen in total rainfall between the northeast and southwest monsoon seasons. During the northeast 

monsoon, total rainfall was found to have increased (Suhaila et al, 2010), but in contrast during the 

southwest monsoon a decrease in total rainfall has been established, despite an increase in intensity 

of rainfall events (Deni et al, 2010). For Indonesia, a contrast in rainfall trends between seasons has 

also been found, with Aldrian and Djamil, 2008) suggesting that there has been an increase in the 

ratio of rainfall of the wet to dry season.  

 

For this report, trends are computed based on ERA-I reanalysis. Annual trends are discussed first, 

followed by seasonal trends. 
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Annual Trends 

Mean MSLP shows a negative statistically significant trend over most large parts of SE Asia 

indicating a decrease in mean MSLP values over the period 1979-2012 (Figure 1.49). For the 5
th

 

percentile (low pressure extremes), a statistically significant negative trend is found south of 5N 

whereas the 95
th

 percentile (high pressure extremes) shows a statistically significant trend over most 

parts west of 12E with a stronger slope north of 10N.  

 

Mean T2m values show a statistically significant increase over most land areas as well as parts of 

the Indian and Pacific Ocean (Figure 1.50). Strongest increases occur over the northern tip of 

Borneo. The mean increase in T2m is accompanied by an increase in minimum and maximum 

extremes with the exception of Myanmar which shows a strong increase in minimum and some 

cooling in the maximum T2m extremes. 

 

A statistically significant increase in mean 10m wind (Figure 1.51) occurs over the Indian Ocean 

west of Sumatra that comes about mainly due to an increase in the maximum extremes. The wind 

increase is consistent with the trends in sea level pressure noted earlier. 

 

ERA-I shows a strong increase in rainfall near the Equator with hotspots in northern Sumatra, west 

Sulawesi and western Papua (Figure 1.52). There are also increases in rainfall in Myanmar with a 

hotspot in the north of the country. The increase in the mean trend is controlled by an increase in the 

maximum rainfall extremes, the distribution of which is very similar. 
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Figure 1.49 ERA-Interim 1989-2009 MSLP slope of the annual 5th percentile (bottom), mean (middle) and 95th 

percentile (top) regression line. Dots indicate a significant Pearson correlation coefficient at the .95 confidence level 

(two-tailed).
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Figure 1.50 ERA-Interim 1989-2009 T2m slope of the annual 5th percentile (bottom), mean (middle) and 95th 

percentile (top) regression line. Dots indicate a significant Pearson correlation coefficient at the .95 confidence level 

(two-tailed). 
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Figure 1.51 ERA-Interim 1989-2009 WSPD10m slope of the annual 5th percentile (bottom), mean (middle) and 95th 

percentile (top) regression line. Dots indicate a significant Pearson correlation coefficient at the .95 confidence level 

(two-tailed). 
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Figure 1.52 ERA-Interim 1989-2009 total precipitation slope of the annual 5th percentile (bottom), mean (middle) and 

95th percentile (top) regression line. Dots indicate a significant Pearson correlation coefficient at the .95 confidence 

level (two-tailed). 
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Seasonal Trends 

Figures for seasonal trends are shown in the Appendix. Seasonal trends in MSLP are shown in 

Figure 1.53 to 5.57 for DJF, MAM, JJA, JAS and SON respectively. The negative trend is strongest 

in DJF with the strongest negative trend in 95
th

 percentile between 10-15N and a strong positive 

trend in the 5
th

 percentile over Pacific Ocean in SON. A strong positive trend (95
th

 percentile and 

mean) is found in western China in MAM. 

 

Warming on Land masses is found in all seasons (Figures 1.58-1.62 for DJF, MAM, JJA, JAS and 

SON respectively). A strong increase in mean, 5
th

 and 95
th

 percentile of temperature is found over 

the northern tip of Borneo in DJF and SON. There is an increase in mean, 5
th

 and 95
th

 percentile 

T2m in all seasons. Warming is pronounced on the eastern Chinese coast in DJF. 

 

Strong positive trends are evident in mean 10m winds and 95
th

 percentile in DJF and SON west of 

Sumatra and Indian Ocean in general in MAM (Figure 1.63-1.67 for DJF to SON respectively). 

There is a noticeable increase in wind speed maxima in JJA north of Papua. The only significant 

decrease in winds occurs over Pacific Ocean (mean and 95
th

 percentile) in SON and over the ocean 

between Papua and Sulawesi (mean and 95
th

 percentile) in DJF and SON. 

Increasing rainfall trends surround the Equator in all seasons (Figures 1.68-1.72 DJF to SON 

respectively). The strongest trends occur in the minimum and maximum extremes. Strong localised 

positive trends are shown in the 95
th

 percentile in all seasons with hotspots in Sumatra, Sulawesi 

and Papua. Local hotspots in increasing rainfall maxima are seen in Myanmar in MAM, JJA and 

SON. A strong decrease in the rainfall minima (5
th

 percentile) occurs between 5 and 10N in JJA. 
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Part 2: CMIP 5 Model Climatology 

 

2.1 Introduction 

This section evaluates coupled climate models from the Coupled Model Intercomparison Project 5 

(CMIP 5) over the SE Asia domain in relation to reanalysis data. The models used in the study are 

listed in Table 2.1. 

Table 2.1 Models from the Coupled Model Intercomparison Project 5 (CMIP 5) used in this study 

 

MODEL MODELING CENTER INSTITUTION 

CCSM4 NCAR National Center for 

Atmospheric Research 

 

CESM1-CAM5 NSF-DOE-NCAR 

 

National Science 

Foundation, Department 

of Energy, National 

Center for Atmospheric 

Research 

 

CESM1-CAM5-1-

FV2 

NSF-DOE-NCAR 

 

National Science 

Foundation, Department 

of Energy, National 

Center for Atmospheric 

Research 

 

CNRM-CM5 CNRM-CERFACS 

 

Centre National de 

Recherches 

Meteorologiques / Centre 

Europeen de Recherche et 

Formation Avancees en 

Calcul Scientifique 
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Climate data for the monthly means of daily means for precipitation rates (PR) (mm/day) and near-

surface 2-metre air temperatures (2M SAT) (°C) for CMIP 5 and reanalysis data were used. The 30-

year historical period 1971-2000 was chosen in this study to evaluate how well models simulate the 

observed climate in SE Asia for these variables.  

Since the datasets have different resolutions, they were re-gridded (interpolated) to the same 

resolution (1° x 1°) and were subset onto the SEA domain, prior to running the ensemble means. 

Ensemble mean and multimodel ensemble mean plots were created for the following seasons: ALL 

SEASONS, December-January-February (DJF), March-April-May (MAM), June-July-August (JJA), 

July-August-September (JAS) and September-October-November (SON). These represented the 

average seasonal spatial distributions for the variables. The JAS season was included to show CMIP 

5 performance in the peak monsoon season.  

2.2 Temperature 

Qualitatively, CMIP 5 models reproduce annual 2M temperatures patterns reasonably well (Figure 

2.1). Differences between individual models are not large. Southern parts of Vietnam, the northern 

South China Sea and the Philippines show some variation; nevertheless this difference is small. EC-

EARTH is the coolest model especially over the oceans. Overall, there is greater consensus between 

models for temperature compared to precipitation, consistent with many other studies. 

EC-EARTH EC-EARTH 

 

EC-EARTH consortium 

 

GFDL-CM3 NOAA-GFDL Geophysical Fluid 

Dynamics Laboratory 

 

GISS-E2-H NASA GISS NASA Goddard Institute 

for Space Studies 

 

HadCM3 MOHC Met Office Hadley Centre 

 

HadGEM2-CC MOHC Met Office Hadley Centre 

 

IPSL-CM5A-MR IPSL Institut Pierre-Simon 

Laplace 
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Figure 2.1 Annual mean 2m temperature for the CMIP 5 ensemble mean (left), NCEP reanalysis (middle) and EC-

Earth model. 

 

DJF  

The reanalysis plots show that 2m temperatures over the maritime section of the domain, especially 

over the oceans, are up to 10˚C warmer than the landmass. 2m temperatures get progressively 

cooler towards the inner landmass section. Coastal areas (Cambodia, SW Vietnam and SW 

Thailand) are generally warmer due to the moderating effect of the ocean on 2m temperature. The 

coolest region encompasses the area to the north of 25˚N (0-10˚C); the northern parts of the 

Philippines and the South China Sea are also relatively cool (20-25˚C). Islands in the maritime 

section receive the most effect from the oceans. 

 

The multimodel mean plot reproduces 2m temperature patterns as shown on the reanalysis plots 

(Figure 2.2); however the effect of warmer 2m temperature (25-30˚C) is limited to the maritime 

section. Individual CMIP 5 models struggle to reproduce the penetration of warmer temperatures 

into the S/SW coasts of the mainland section, unlike those shown on the reanalysis plots. 

Furthermore, the multimodel mean plot exhibits cooler temperatures than the reanalysis in the areas 

to the north of 25˚N. 

 

Only the models GISS-E2-H, HadCM3 and HadGEM2-CC were able to produce some, although 

restricted, penetration of warmer temperatures into the south coast of Vietnam (Figure 2.3). GISS-

E2-H is the warmest model for the SE parts of the domain.  
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Figure 2.2 DJF CMIP 5 Multimodel Mean and Reanalysis temperature. 

 

 

 

 

 

 

Figure 2.3 A selection of CMIP 5 DJF temperature. 

 

MAM 

Compared with DJF, MAM temperatures in the range 25-30˚C penetrate further into the landmass 

areas, encompassing most of Thailand, Cambodia and southern parts of Vietnam and Myanmar 

(Figure 2.4). The inland areas of the maritime section (Sumatra, Borneo and Celebes) are up to 

10˚C cooler temperatures than the coastal areas. Southern China and the northern parts of Vietnam, 

Myanmar and Laos are relatively cooler than the maritime section, although temperatures are in 

general higher than those shown in the DJF.  

 

The multimodel mean does not differ much from the reanalysis; again supporting the fact that there 

is considerable skill in reproducing temperatures rather than precipitation climatologies (Figure 2.4). 

ALL MODELS NCEP ERA-40 

GISS-E2-H HadCM3 HadGEM2-CC 
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On a model-by-model basis, all models reproduce the southwesterly penetration of warmer 

temperatures into the S/SW coasts of the mainland section. However with regards to the reanalysis, 

the penetration produced by CMIP 5 is too weak and does not extend enough into the landmass. For 

example, the areas to the north of the South China Sea and northern parts of the Philippines are 

considerably cooler than the reanalysis.  

 

It is also apparent in some models that a cool tongue over the SW Myanmar coast and Bay of 

Bengal is simulated in some models (CESM1-CAM5; CESM1-CAM5-1-FV2; EC-EARTH; GFDL-

CM3; IPSL-CM5A-MR and HadGEM2-CC), a feature not evident in the reanalysis (Figure 2.5). 

GISS-E2-H over-simulates 2m temperature over the SE area of the domain and is too warm for the 

area to the west of Bangladesh (Figure 2.6).   

 

 

 

 

Figure 2.4 CMIP 5 Multimodel Mean and Reanalysis MAM temperatures. 

 

 

 

 

 

 

 

 

 

ALL MODELS ERA-40 NCEP 
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Figure 2.5 A selection of CMIP 5 models simulating the cool tongue over the SW Myanmar coast and Bay of Bengal 

during MAM. 

 

 

 

 

 

 

 

 

Figure 2.6 GISS-E2-H MAM temperature. 

 

 

CESM1-CAM5 CESM1-CAM5-1-FV2 EC-EARTH 

GFDL-CM3 IPSL-CM5A-MR HadGEM2-CC 

GISS-E2-H 
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JJA and JAS 

In the summer, a tongue of cool air (up to 10˚ cooler than the areas south of 25˚N) is evident over 

NE Vietnam, northern parts of Laos, NE Myanmar and SW China. The (topographically controlled) 

coolest temperatures (5-15˚C) are present over the Himalayas, Bhutan and northern India (Figure 

2.7). The maritime effects which act to modulate near coastal land temperature in the boreal 

summer are also clear. In this season, warmer temperatures are more extensive and penetrate further 

north compared to previous seasons. 

 

 

 

 

 

 

Figure 2.7: CMIP 5 Multimodel Mean and Reanalysis Plots temperature for JJA. 

For JJA and JAS, the area to the west of Bangladesh is problematic in some models which appear to 

be much warmer than the reanalysis data (Figure 2.8).  

 

 

 

 

 

 

 

Figure 2.8 ERA-40 and HadCM3 JJA temperatures 

The regions to the north of 25˚N are cooler in the multimodel mean than the reanalysis. Borneo and 

ERA-40 HadCM3 

ALL MODELS ERA-40 NCEP 
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Malaysia are also cooler in the multimodel mean. CMIP 5 models also over-estimate 2m 

temperature in the regions to the west of Bangladesh.  

 

Overall, models reproduce the warmer temperatures in summer reasonably well though some 

models have difficulty in Myanmar, namely: GISS-E2-H; GFDL-CM3 and EC-EARTH (Figure 

2.9).  

 

 

 

 

 

 

Figure 2.9 A selection of CMIP 5 models that fail to produce sufficiently warm conditions over the land areas. 

 

NCEP and ERA-40 differ from each other in relation to the degree and spatial extent of cooler air 

over the landmass during JAS (Figure 2.10). ERA-40 shows a cool tongue that extends southwards 

into NE Vietnam, Northern Laos and NE Myanmar. NCEP on the other hand, presents a cooler 

landmass overall, with only coastal regions experiencing 2m temperatures >25˚C. Warm 

temperatures extend quite far into Cambodia and southern Thailand. NCEP also exhibits cooler 

temperatures over land areas in the maritime section. 

 

 

 

 

 

GISS-E2-H GFDL-CM3 EC-EARTH 
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Figure 2.10 Reanalysis temperature for JAS 

 

The multimodel mean agrees reasonably well with ERA-40 for the landmass section; the 

multimodel mean and NCEP agree in the case of the maritime continent (Figure 2.11).  

 

 

 

 

 

 

 

Figure 2.11 CMIP 5 Multimodel JAS temperatures 

 

All models reproduce the cool bulge extending southwards into NE Vietnam, Northern Laos and 

NE Myanmar. However some models, such as CNRM-CM5, GISS-E2-H and IPSL-CM5A-MR 

(Figure 2.12) overestimate the 2m temperatures to the west of Bangladesh. GISS-E2-H also 

overestimates temperatures over northern parts of Vietnam.  

 

ERA-40 NCEP 

ALL MODELS 
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Figure 2.12 Sample of CMIP 5 models with warm bias in JAS temperature 

 

SON 

During the SON season, ERA-40 and NCEP differ on the extent of cooler temperatures over the 

landmass such that NCEP is cooler than ERA-40. Nevertheless, the multimodel mean reproduces 

temperature patterns reasonably well (Figure 2.13). A notable change from JAS is that a small, cool 

branch protrudes southwards into west Vietnam. This is illustrated in the ERA-40 and multimodel 

mean plots. Whilst there is a broad consensus amongst models, there are still some notable 

differences in relation to temperature over parts of Vietnam, Cambodia and Thailand. In addition 

the models HadCM3, IPSL-CM5A-MR and HadGEM2-CC overestimate temperatures over 

Sumatra, Borneo and Malaysia (Figure 2.14). 

 

 

 

 

Figure 2.13 CMIP 5 Multimodel Mean and Reanalysis temperatures for SON 

 

 

CNRM-CM5 GISS-E2-H IPSL-CM5A-MR 

ALL MODELS ERA-40 NCEP 
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Figure 2.14 Models over-estimating temperatures over Sumatra, Borneo and Malaysia. 

 

2.3 Precipitation  

 

All Seasons 

The annual multimodel mean agrees in general with the reanalysis, although the areas to the east of 

100˚E are too wet and interiors of northern Thailand, Laos and Vietnam are too dry, in comparison 

with reanalysis. Models also differ on the precipitation patterns over the southeastern areas of the 

mainland regions (Figure 2.15).  

 

 

 

 

 

 

Figure 2.15 CMIP 5 Multimodel Mean and Reanalysis annual mean precipitation 

 

 

HadCM3 IPSL-CM5A-MR HadGEM2-CC 

ALL MODELS NCEP ERA-INTERIM 
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DJF  

The multimodel mean reproduces the general precipitation patterns for DJF. There is some 

agreement between the models and reanalysis, such that highest precipitation occurs in a band 

covering the maritime continent (Indonesia, Malaysia and the Philippines). This precipitation band 

extends from approximately 10˚N to 10˚S during boreal winter (DJF). The domain is relatively drier 

(0-4mm/day) to the north of 10˚N (Figure 2.16). 

 

 

 

 

 

 

Figure 2.16 DJF Multimodel Mean and Reanalysis. 

 

MAM 

ERA-Interim shows higher precipitation over northern Myanmar compared to the other reanalysis 

plots. The reanalysis produces >2mm/day over the SE section of the landmass (Vietnam, Cambodia, 

Thailand, Laos, SE coast of Myanmar and southern China), especially in ERA-Interim.  

 

On the whole, the multimodel mean agrees reasonably with the reanalysis (Figure 2.17). The 

multimodel mean reproduces the precipitation centre over northern Myanmar and Bhutan as shown 

in the reanalysis (ERA-Interim). Precipitation is also reproduced well over parts of eastern China 

and over Indonesia. However, CMIP 5 models are dry in comparison with reanalysis over Vietnam, 

Cambodia and Thailand.  

 

Overall, there is little disagreement on the location of the precipitation band over the maritime 

continent. However, individual CMIP models show some disagreement on the precipitation 

ALL MODELS NCEP ERA-INTERIM 
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intensity within the maritime continent and also over northern Myanmar and Bhutan.  

 

 

 

 

 

 

Figure 2.17 MAM CMIP 5 Multimodel Mean and Reanalysis precipitation. 

 

JJA 

According to Figure 2.18, the reanalysis shows high precipitation over the Bay of Bengal. 

Precipitation is highest over Myanmar and Bhutan (> 12-20mm/day) and northern parts of Laos, 

Vietnam and the SW coasts of Cambodia, Vietnam and Thailand. Rainfall of up to 12-16mm/day is 

evident over the northern Philippines. The landmass interiors, especially southern China, Myanmar, 

Thailand and Cambodia, are relatively dry in comparison to the SW/W coasts.  

 

 

 

 

 

Figure 2.18 JJA CMIP 5 Multimodel Mean and Reanalysis precipitation. 

 

The multimodel mean reproduces these patterns sufficiently, particularly for the Bay of Bengal 

ALL MODELS NCEP ERA-INTERIM 

ALL MODELS NCEP ERA-INTERIM 
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region, northern India and Myanmar. It also reproduces the precipitation maxima in the SW of the 

domain. The multimodel mean underestimates precipitation over Vietnam, Laos and Cambodia and 

over the SW coasts. The precipitation band over the South China Sea and the northern Philippines, 

as evident in the reanalysis, does not appear to be reproduced at all in the multimodel mean. SE 

China is also too dry. 

  

Individual CMIP 5 models differ substantially in intensity and spatial distribution of precipitation. 

Some models (GISS-E2-H, CESM1-CAM5-1-FV2, CESM1-CAM5 and CCSM4), overestimate 

precipitation over Bhutan and north Myanmar, reaching >32mm/day. Myanmar exhibits high 

variability in precipitation between different models, particularly the west coasts, northern and 

southern parts of the region. The South China Sea, areas surrounding the Philippines and oceans 

over Indonesia are also problematic (Figure 2.19). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19 JJA mean precipitation for a sample of CMI 5 models. 

 

GISS-E2-H CESM1-CAM5-1-FV2 CESM1-CAM5 

CCSM4 
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JAS 

The reanalysis illustrates that the highest precipitation in JAS is concentrated around the S/SW 

Myanmar coast. For ERA-Interim, the region of highest precipitation is more extensive and covers 

most of Bhutan and Myanmar, reaching up to 24-28mm/day in some areas of northern Bhutan. A 

band of precipitation encompasses the SE section of the landmass, the South China Sea and 

northern Philippines. The SW coasts of Thailand, Cambodia and Vietnam are also wet. The 

interiors of southern China are relatively dry.  

The multimodel mean simulates the overall pattern reasonably well; but fails to reproduce enough 

precipitation over the SE areas of the landmass section (Figure 2.20). Precipitation over Vietnam, 

Thailand, Laos and Cambodia are underestimated, with modest amounts over the seas surrounding 

the Philippines. Precipitation is overestimated for the SW coasts and north of 25°N. 

 

 

 

 

 

 

Figure 2.20 JAS CMIP 5 Multimodel Mean and Reanalysis precipitation. 

 

In general there is poor consensus amongst CMIP 5 models in relation to spatial patterns and 

intensities of rainfall. Models struggle to reproduce precipitation patterns over Myanmar and areas 

north of 20°N. CMIP 5 models, especially CESM1-CAM5; EC-EARTH and GISS-E2-H, fail to 

reproduce the band of precipitation (shown in the reanalysis) over the Philippines, South China Sea 

and parts of Vietnam, Cambodia, Laos and Thailand (Figure 2.21).  

 

 

 

ALL MODELS NCEP ERA-INTERIM 
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Figure 2.21 A selection of CMIP 5 JAS model simulations (JAS). 

 

JAS is a problematic season for CMIP 5, especially in representing detailed Asian Monsoon 

precipitation patterns.  

 

SON  

Reanalysis plots exhibit a strong precipitation band located in a southerly position to encompass 

20˚N - 10˚S. Highest precipitation is shown for the eastern coast of Vietnam and also, the SW 

coasts of Cambodia and Thailand (CMAP and ERA-Interim). In NCEP, this zone of high 

precipitation encompasses more of the SE areas of the landmass, covering most of Cambodia and 

southern parts of Vietnam and Thailand. Interiors are relatively dry – although for ERA-Interim, 

some parts of northern Myanmar are still relatively wet (Figure 2.22).  

CESM1-CAM5 EC-EARTH GISS-E2-H 

HadCM3 
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Figure 2.22 SON CMAP and reanalysis precipitation. 

 

The multimodel mean successfully reproduces the southward migration of the precipitation band 

from the JJA and JAS seasons and situates the band between 20˚N - 10˚S. It however fails to reduce 

enough precipitation over northern Myanmar from the previous seasons (Figure 2.23).  

 

 

 

 

 

 

 

Figure 2.23 SON CMIP 5 Multimodel Mean precipitation 

 

On a model-by-model basis, there is consensus over the general location and extent of this 

precipitation band. The southward shift of the band due to seasonal cycle, as shown in the reanalysis, 

is well represented by all models. However models disagree on precipitation intensity and also, the 

amount east of 100˚E, north of 25˚N and over western coasts of the landmass. CCSM4, CESM1-

CAM5, CESM1-CAM5-1-FV2, GISS-E2-H and HadGEM2-CC, are too wet (Figure 2.24). 

 

CMAP NCEP ERA-INTERIM 
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Figure 2.24 Examples of wet models in SON 
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Part 3 Crops and climate change 

3.1 Introduction 

This part of the report will examine potential changes to climate and implications for agriculture for 

key crops over the domain comprising the countries of Myanmar, Laos, Thailand, Cambodia, 

Vietnam, Malaysia, Philippines and Indonesia and covering the region of 85ºE to 155ºE, 25ºS to 

30ºN. 

Key agricultural crops for the South-East Asian region are examined. Current spatial distribution of 

crops will be mapped and climatic thresholds and limits for optimal cultivation will be explored. 

Crop-climate suitability maps for each crop are established on a reanalysis dataset in order to 

evaluate the magnitude of model error over South-East Asia, in relation to the simulation of crop-

climate regions under control conditions. Climate change projections for South-East Asia in the 

CMIP 5 model subset for three ‘time slices’ of the twenty-first century; the 2030s, 2050s and 2090s 

under the RCP4.5 emissions scenario are examined. Potential regions of growth of our selected 

crops under climate change projections for the domain will be analysed and discussed. The climatic 

thresholds and limits established for each crop will be again applied to the model output, this time 

during the twenty-first century in order to establish the potential risks to food security in East Africa 

under anthropogenic climate change.  

 

3.2. Key food crops of South-East Asia 

This study focuses on a number of key food crops to the South-East Asian region, which are 

introduced in this section. The optimum and absolute climate thresholds for cultivation of the 

selected crops will be examined alongside the current distribution of production over the South-East 

Asian domain. This process will identify areas of growth for each crop which are already 

climatically marginal in terms of the feasibility of cultivation and therefore where a changing 

climate could induce food security concerns. Moreover, by creating crop-climate maps for the 

suitability of production and comparing it to current regions of growth it also has the potential to 

identify regions where the potential crop production is not currently being realised. The benefits of 

this are twofold. First, it could highlight non-climatic factors acting as a barrier to cultivation (in 

cases where climate conditions appear optimal but production is not occurring) and second, it may 

identify regions of potential expansion for crop cultivation, which may be necessary as climate 

changes in future decades.  
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3.2.1 Crop selection 

With the study region diverse, comprising of Myanmar, Laos, Thailand, Cambodia, Vietnam, 

Malaysia, Philippines and Indonesia, it was necessary to use three markers to select a number of 

crops to study. These were the value of the crops over the eight focus counties, the number of the 

countries of interest in which they are grown and the importance from a food security perspective. 

Table 3.1 shows the selected crops, their total value to South-East Asia (internationally standardised 

prices), and the number of the countries in the domain where the crop is grown. 

Table 3.1 Selected crops for study, the number of countries they are grown in and their total value to the eight South-

East Asian countries of this study. 

Crop No. Countries Grown In 

(parentheses = where in top 

25 commodities by value) 

Value (in $1000s) 

Paddy Rice 8 (8) 53958427 

Palm Oil 4 (3) 18262823 

Natural Rubber 7 (7) 9770212 

Cassava 8 (6) 6521795 

Sugar Cane 8 (8) 5906583 

Bananas 7 (7) 5205800 

Mangoes, Mangosteens, 

Guava 

7 (6) 4159140 

Coconuts 7 (5) 3910767 

Maize 8 (4) 2242308 

Green Coffee 8 (5) 2120407 

 

3.2.2 Climatic crop growth thresholds 

A review of grey literature was undertaken for each of the selected crops to examine the ideal, and 

tolerated, growing conditions for the selected crops in South-East Asia. Climate variables under 

consideration include optimal average temperatures, maximum and minimum temperatures, optimal 

average rainfall, maximum and minimum rainfall averages, if the crop has the capacity to deal with 

waterlogging or drought, length of growing period and growing altitude, photo sensitivity, 

harvesting period and any specific characteristics unique to a particular crop.  

Key climate thresholds are shown in Table 3.2. These thresholds are employed to create masks 

depicting the climatic geographical limits of cultivation for each crop within South-East Asia. 

Specifically, each threshold variable (for example, the optimal temperature range) is taken in turn 

with the limits applied to the ERA-Interim reanalysis data to create a mask over the domain for each 

individual crop. The mask can take two possible values; zero when the threshold is not met and one 

when it is. The area shaded in the colour corresponding to values of one depicts the region for 
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which the conditions are suitable for growth of the crop in question for the variables under 

examination. This process is repeated for each climatic variable for the crop and the resulting maps 

layered over one another to result in a single map showing the suitability of growing conditions for 

each crop. Regions of the domain with higher values correspond with more suitable growing 

conditions. However, in the case of a key absolute threshold (such as minimum annual 

precipitation), areas outside of the appropriate rainfall range indicate conditions that are unsuitable 

for crop cultivation irrespective of whether all the other conditions are met. In this case the region 

with insufficient rainfall will cause a mask of zero to be co-located with it, to take this absolute 

limit of cultivation into account.  
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Table 3.2 Key climate thresholds for growth of selected crops over South-East Asia 

CROP Optim

al Avg 

Temp 

Max 

Temp 

Min 

Tem

p 

Optimal 

Avg Rainfall 

Max  

Avg 

Rainfall 

Min Avg 

Rainfall 

Capacity to 

deal with 

waterlogging/  

Capacity to 

deal with 

drought? 

Growi

ng 

period 

Altitude Photo- 

sensitivity 

Paddy 

Rice 

21- 35  1500  1200 for 

one crop 

Yes, up to 6 

days 

No    

Palm Oil 25-28 33 av 22av 2000 5000 1800 Occasional 2-4 months 

<100m 

month 

 <500m >2000 

sunshine 

hours/year 

Natural 

Rubber 

25-28 34 22 av 

20 

2500, no dry 

season 

      200 

hours/year 

Cassava 22-28 <30av 

for 8m 

10 1000-4000 5000 500 No Yes, up to 2-

3 months 

365 <1500m <13h light 

Sugar 

Cane 

22-30 38 20 1500-2000  600    <1600m  

Bananas 21-30 

(27 opt) 

38 16 2000-2500  1200  No 365   

Mangoes, 

Mangoste

en, 

Guava 

24-29 38 12 1270 3750 750 Occasional Yes  < 1200m 

(600m 

commerc

ial) 

 

Coconuts 22-27 38 12, 

21 av 

1500-2500  1000  No  <600m, 

+close to 

equator 

 

Maize 25-30 40 av  

10,20 

(av) 

700-1100  500 (300 

if grow 

season) 

No Not in 

pollination 

or later 

growth 

100-120 <1500m  

Green 

Coffee  

24-30 

robusta 

20-24 

arabica 

32 15 1200-1500 

arabica 

 

3000     <800m 

robusta 

>1000m 

arabica 

 



61 
  

The following masks are created for each of the ten selected South-East Asian crops.  

1. Absolute rainfall range 

2. Optimum rainfall range 

3. Optimal temperature range 

4. Optimal maximum temperature 

5. Average minimum temperature 

These five masks are then combined for each individual crop over the domain, with a score of five 

showing optimal climatic conditions for crop cultivation and a score of zero showing unsuitable 

conditions for cultivation, either because none of the conditions were satisfied or because the 

absolute rainfall range was not met.  

3.2.3 Results 

Figure 3.1 shows the FAO crop growth maps as an indication of where each of the ten selected 

crops is currently being grown as a comparison for the crop-climate maps of suitable conditions of 

cultivation. Figures 3.2 to 3.11 show climatically optimal regions for growth through the layered 

mask for each of the selected crops over South-East Asia in the ERA-Interim dataset for the time 

period 1980 to 2010. Regions for each individual threshold (Figures 3.12 to 3.21) can be seen in the 

Appendix. 

  

Rice, paddy Palm Oil 

Natural Rubber Cassava 
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Sugar Cane Bananas 

Mangoes, Mangosteens, Guavas Coconuts 

Maize Coffee, green 

Figure 3.1 FAO crop growth maps, highlighting cultivation of each selected crop in South-East Asia 
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Paddy Rice 

Paddy rice is grown in each of the eight focus countries and is the crop with the greatest value to 

South-East Asia, totalling 53,958,427 thousand US dollars. The crop-climate suitability map 

indicates that whilst there are no areas of the domain which are not suitable for growing rice, areas 

with the highest suitability score of five are relatively scarce. Optimal conditions for rice cultivation 

are found over Vietnam, Laos, Cambodia and parts of Thailand. The remainder of the focus 

countries (Myanmar, Malaysia, Indonesia and the Philippines) have adequate, though not optimal 

rainfall values for rice cultivation. This could go some way to explaining why 45% of the rice 

production is South-East Asia is irrigated, with the remainder rain fed.  

Palm Oil 

Palm oil is the second most important crop to South-East Asia by value, but it is only cultivated in 

four of the eight focus countries; Malaysia, Thailand, Indonesia and the Philippines. The ERA-

Interim cop-climate suitability map indicates that again, it is optimal rainfall values that limit the 

suitability of parts of South-East Asia to cultivate palm oil. Optimal conditions for palm production 

are found in parts of Malaysia and western Indonesia. Additionally, although palm oil is not 

currently in production in Cambodia, this country is the other part of South-East Asia with optimal 

climate conditions in the ERA-Interim dataset and equally, suitable conditions are found over much 

of the region. This suggests that there is the potential to expand palm oil production in South-East 

Asia, in particular at low altitudes. This is not a short term strategy, however, with the oil palm not 

producing fruit until three to four years after planting.  

Natural rubber 

Natural rubber is currently in production in all of the focus countries of South-East Asia with the 

exception of Laos. This is reinforced by the crop-climate map which shows optimal conditions for 

the production of natural rubber across South-East Asia with the exception of Laos and parts of 

Vietnam. The limiting factors in these countries are optimal rainfall and temperature. For the 

remainder of the focus counties, the climate is especially suitable for the production of natural 

rubber, meeting the thresholds in all five climate variables.  

Cassava 

Cassava, a staple root crop in many tropical and subtropical countries, is grown in all eight of the 

South-East Asian focus countries and ranks in the top twenty-five commodities by value in all 

except Myanmar and Malaysia. The ERA-Interim crop-climate map for cassava shows optimal 

climate conditions for the cultivation of this crop across the whole of the domain.  
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Sugar cane 

Sugar cane is cultivated across all eight South-East Asian countries and also ranks in the top 

twenty-five commodities by value for each country. Despite the similarities to cassava cultivation in 

terms of growth and value to South-East Asia, the crop-climate map calculated on the ERA-Interim 

data shows a different picture. Regions with optimal climatic conditions are limited to Laos, 

Vietnam, Cambodia and parts of Thailand. Malaysia, Indonesia, Myanmar and the Philippines show 

sub-optimal conditions for sugar cane cultivation. Indeed, western Indonesia show conditions 

unsuitable for sugar cane production due to rainfall in the ERA-Interim dataset that is outside of the 

absolute rainfall thresholds for this crop. Equally, for the rest of Indonesia, Malaysia, the 

Philippines and Myanmar also have rainfall as the limiting factor on cultivation; whilst rainfall 

totals are within the absolute necessary thresholds they are not within optimal totals.  

Banana 

Bananas are grown in all of the focus countries with the exception of Myanmar. For all countries in 

which bananas are cultivated they rank within the top twenty-five commodities by value. The crop-

climate map shows conditions suitable for the growth of bananas across the domain. Many regions 

show optimal conditions by all markers. This region is located down the centre of the domain on a 

north-west to south-east diagonal and encompasses Malaysia and central Indonesia. The remainder 

of the countries where bananas are grown see potential slightly limited by rainfall; absolute rainfall 

thresholds are met, but not optimal. On the other hand, Myanmar sees optimal climate conditions 

for bananas cultivation under present conditions in the ERA-Interim dataset, indicating a possible 

diversification opportunity.  

Mangoes, mangosteens and guava 

As with bananas, mangoes, mangosteens and guavas are cultivated in all of the South-East Asian 

focus countries with the exception of Myanmar. They rank in the top twenty-five commodities by 

value in all of these countries except Laos. The whole of the South-East Asian domain has a climate 

suitable for the cultivation of mangoes, mangosteens and guavas with a crop-climate suitability 

mask score of four across the focus countries. This signals the opportunity for potential crop 

diversification in Myanmar. None of the region has the highest crop-climate suitability mask score 

of five. This is due to the optimal rainfall threshold not being met anywhere in South-East Asia, 

although the necessary absolute rainfall thresholds are met.  

Coconut 

Coconuts are cultivated in all the focus countries of South-East Asia except Laos. Conditions are 
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optimal for the growth of coconuts in much of South-East Asia in the ERA-Interim dataset and 

there would be the potential to grow them in Laos, particularly in the south of the country. The 

country with least optimal conditions for coconut growth is the Philippines, where rainfall within 

the absolute (but outside the optimal) thresholds limits the potential for cultivation slightly.  

Maize 

Maize is grown in all of the focus countries of South-East Asia, but only ranks within the top 

twenty-five commodities by value for four of these countries; Laos, Cambodia, the Philippines and 

Indonesia. The crop-climate suitability map gives some indication as to why this is the case. None 

of the focus countries have optimal climate conditions, with the majority of the region having a 

suitability value of four. This is due to rainfall being outside of the optimal values for maize 

productivity across South-East Asia. Parts of the region also have lower suitability for maize 

cultivation due to mean temperature values outside of the optimal range. These areas are the 

northern areas of Laos, Myanmar and Vietnam and also parts of Indonesia.  

Green coffee 

Green coffee, largely of the Robusta variety, is grown in all eight of the focus countries and ranks in 

the top twenty-five commodities by value in Laos, Thailand, Vietnam, the Philippines and 

Indonesia. The ERA-Interim crop-climate suitability map shows optimal climate conditions for the 

cultivation of coffee over all of the focus countries with the exception of the east and west most 

regions of Indonesia. Even here, conditions are suitable for the cultivation of coffee, just with 

rainfall totals that are within the absolute rather than optimal limits. 

With the exception of palm oil, the remainder of the key crops are grown across the majority of the 

eight focus countries and climate conditions are often optimal in the ERA-Interim dataset. Where 

conditions for cultivation are slightly compromised, the key threshold causing this is the optimal 

rainfall. Whilst the absolute rainfall bounds are suitable for cultivation in all cases, optimal rainfall 

totals are not always present. This could both impact of yield under current climate conditions and 

also make the cultivation of crops sensitive to rainfall particularly vulnerable to anthropogenic 

climate change at the end of the twenty-first century. This indicates that particular attention needs to 

be given to rainfall in the examination of projected changes to climate over South-East Asia under 

increasing greenhouse gases and that this could have more impact on potential crop growth than 

changing temperatures.  
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Figure 3.2 Era-Interim derived paddy rice crop growth area, 1980-2010. 

 

Figure 3.3 Era-Interim derived palm oil crop growth area, 1980-2010. 
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Figure 3.4 Era-Interim derived natural rubber crop growth area, 1980-2010 

 

Figure 3.5 Era-Interim derived cassava crop growth area, 1980-2010 
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Figure 3.6 Era-Interim derived sugar cane crop growth area, 1980-2010 

 

 

Figure 3.7 Era-Interim derived banana crop growth area, 1980-2010 
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Figure 3.8 Era-Interim derived mango, mangosteen and guava crop growth area, 1980-2010 

 

Figure 3.9 Era-Interim derived coconut crop growth area, 1980-2010 
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Figure 3.10 Era-Interim derived maize crop growth area, 1980-2010 

 

Figure 3.11 Era-Interim derived green coffee crop growth area, 1980-2010 
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3.3. Climate models and the South-East Asian climate 

Coupled climate models are the main tool utilised for examining future climate projections, and 

similarities between observed climate and model values are necessary, but not sufficient, for 

confidence in future projections (Caminade and Terray, 2010). In recent years significant 

improvements have been made to GCMs, with the evolution from purely atmospheric models to 

those including oceans, land surface processes, ocean-ice interactions and many parameterisations 

of sub grid scale processes simulate future climate (Herrera et al, 2006). However, weaknesses still 

remain and models are able to represent the complex South-East Asian climate with varying degrees 

of success. This study follows a method common in climate science; to use an ensemble of multiple 

models alongside looking at the individual model results. The aim is that by combining models with 

varying parameterisations, the averaging process will retain robust responses, whilst cancelling out 

differences between models that have no physical basis (Giannini et al, 2008). 

Nonetheless, the use of models is vital to evaluate potential anthropogenically induced changes to 

the South-East Asian climate and how these may impact on crop cultivation. The first stage in this 

process is to examine the extent to which a subset of coupled climate models from the CMIP 5 

project can reproduce the current climate of South-East Asia.  

 

3.3.1 Model selection 

A subset of Climate Model Intercomparison Project 5 (CMIP 5) coupled climate models were used 

in this section. These models also form the basis for the work of the Intergovernmental Panel on 

Climate Change (IPCC) Fifth Assessment Report, released in 2013. The models were selected 

based on the availability of data in all three time slices (2030s, 2050s and 2090s); seven models 

were initially selected and an ensemble mean of these seven models was also created. Details of the 

selected models are shown in Table 3.3.  
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Table 3.3 Details of the CMIP 5 models selected for this study. 

Modelling Group Model Designation 

NCAR/UCAR Community Earth System 

Model 

CESM1-BGC 

Center of National Weather Research CNRM-CM5 

European Centre for Medium Range Weather 

Forecasting 

EC-EARTH 

U.S. Dept. Of Commerce/NOAAb/ 

Geophysical Fluid Dynamics Laboratory 

GFDL-CM3 

Goddard Institute for Space Studies, NASA GISS-E2-R 

UK Meteorological Office HadGEM2-CC 

Institut Pierre Simon Laplace Climate 

Modelling Group 

IPSL-CM5A-LR 

 

3.4 Model derived crop-climate growth areas 

The same approach as outlined in Section 3.2 was utilised to examine the realisation of crop-climate 

suitability regions for each crop in each of the selected CMIP 5 models and the ensemble during the 

control period (1980-2005). This allows for the identification of regions of model weakness in 

simulating accurate crop-climate suitability masks, in comparison with the ERA-Interim dataset. 

Figures 3.22 to 3.31 show the crop-climate suitability maps for each crop for the ensemble series. 
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Figure 3.22 Model-ensemble derived paddy rice crop growth area, 1980-2005 

 

 

Figure 3.23 Model-ensemble derived palm oil crop growth area, 1980-2005 
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Figure 3.24 Model-ensemble derived natural rubber crop growth area, 1980-2005 

 

 

Figure 3.25 Model-ensemble derived cassava crop growth area, 1980-2005 
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Figure 3.26 Model-ensemble derived sugar cane crop growth area, 1980-2005 

 

 

Figure 3.27 Model-ensemble derived banana crop growth area, 1980-2005 
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Figure 3.28 Model-ensemble derived mango, mangosteen and guava crop growth area, 1980-2005 

 

 

Figure 3.29 Model-ensemble derived coconut crop growth area, 1980-2005 
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Figure 3.30 Model-ensemble derived maize crop growth area, 1980-2005 

 

 

Figure 3.31 Model-ensemble derived green coffee crop growth area, 1980-2005 
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 Paddy rice 

For rice, the ensemble derived crop-climate suitability map is qualitatively very similar to the ERA-

Interim derived map. The optimal regions for rice cultivation are located in the same place; in a 

band to the south of the domain, across southern Indonesia, and over much of Vietnam, Laos and 

Cambodia. In terms of the individual models, they also show good representations of the suitability 

of climate for the cultivation of rice in South-East Asia. The weakest model is HadGEM, which 

depicts areas of the Philippines as being unsuitable for rice cultivation (due to rainfall totals) and 

also has areas of optimal growth located through Thailand and Malaysia, where ERA-Interim and 

the other models have a suitability score of four, not five.  

Palm oil 

Again, the model ensemble shows a good replication of the crop-climate map for the cultivation of 

oil palms in South-East Asia. This is particularly the case over the land regions of the eight focus 

countries, where the optimality of conditions is matched to the ERA-Interim map. The primary 

difference in suggested crop-climate suitability lies in the South China Sea and so does not impact 

on the depiction of growing conditions over a landmass. The individual models again show a good 

approximation to the ERA-Interim crop-climate suitability maps, in particular over the land regions. 

The greatest differences are found in CESM, in particular over parts of Indonesia, where conditions 

are not shown to be as optimal as in ERA-Interim.  

Natural rubber 

Once more, the seven model ensemble reproduces the ERA-Interim crop-climate suitability map 

well. Optimal regions of cultivation are co-located with the countries of South-East Asia, with one 

important difference. The ensemble shows Myanmar as being unsuitable for the cultivation of 

natural rubber due to the bounds of absolute precipitation. Given that natural rubber is cultivated in 

Myanmar, this is an inaccuracy for the ensemble for this crop-climate map. This is a weakness that 

is present throughout the individual models, although the depiction of crop-climate suitability 

across the remainder of the domain is generally qualitatively good.  

Cassava 

In ERA-Interim, the whole of South-East Asia showed optimal conditions for the cultivation of 

Cassava. The same pattern is seen in the ensemble and all of the individual models, with the 

exception of GISS. GISS, in places, does not replicate the optimum conditions due to a bias in 

temperature over parts of central South-East Asia.  
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Sugar cane 

The crop-climate map for sugar cane shows a relatively weak depiction of the ERA-Interim crop-

climate map during the control period. The main weakness of the ensemble is the representation of 

the central band of South-East Asia as unsuitable for the cultivation of sugar cane due to the 

absolute rainfall thresholds. This affects parts of Malaysia, Indonesia and the Philippines. To the 

north and south of this region the regions of optimal climate conditions for sugar cane cultivation 

are well depicted, including Vietnam, Cambodia and Laos. Some of the individual models do 

manage to depict suitable conditions for the cultivation of sugar cane over Malaysia including EC, 

HadGEM and CNRM.  

Banana 

For banana cultivation, the crop-climate ensemble map shows a good representation of optimal 

growing conditions in comparison to the ERA-Interim map. Whilst the regions of crop-climate 

suitability scoring five are not co-located in all cases with those in the ERA-Interim map, all 

countries with suitable growing conditions for bananas (suitability score of four or five) are the 

same and the spatial pattern of optimal suitability is also qualitatively similar. On the whole, 

individual models can also replicate the crop-climate suitability of South-East Asia for banana 

cultivation. The primary weakness is found over Myanmar, where the EC, HadGEM and IPSL 

models show an unsuitable climate for bananas. However, bananas are not currently cultivated in 

Myanmar and so this could be an instance where the ERA-Interim dataset and the models show 

differences which are challenging to unravel.  

Mangoes, mangosteens and guavas 

As with the other key crops of South-East Asia, the ensemble crop-climate suitability map is 

qualitatively similar to that of ERA-Interim. All of the focus countries have suitable conditions for 

the cultivation of this fruit. The individual models also show a good representation of optimal 

climate conditions for mango cultivation, with two exceptions; GISS and IPSL. Both of these 

models have rainfall outside of absolute thresholds over regions of Malaysia and Indonesia, with 

GISS also having this issue over the Philippines, meaning that these two models fail to match the 

ERA-Interim crop-climate map for mango cultivation suitability in these regions.  

Coconut 

On the whole, the ensemble successfully replicates the optimal crop-climate suitability across 

South-East Asia. Small differences are found Malaysia and Indonesia. These differences are found 

to originate in three of the individual models; EC, GISS and IPSL. In these models, there are 
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regions of Malaysia and Indonesia with rainfall values outside of the absolute threshold for the 

growth of the coconuts, which impacts on the ensemble as well.  

Maize 

The crop-climate suitability map for maize shows close qualitative similarity between the model 

ensemble and ERA-interim. All of the focus countries show the same level of optimal conditions for 

the cultivation of maize between the two datasets. The individual models also show very similar 

levels of crop-climate suitability for maize cultivation. The one exception is the EC model, where 

conditions, while not unsuitable, are less optimal through the central part of the domain than in 

other depictions of crop-climate suitability.  

Green coffee 

As with other commodities, the ensemble mean replicates the optimal growing regions for green 

coffee well. Spatial patterns and crop-climate suitability scores are co-located across South-East 

Asia when the ensemble map is compared to the ERA-Interim map for the control period. 

Individual models also simulate the crop-climate suitability regions well with minimal exceptions. 

One exception is found to the north of the domain in HadGEM, where there are regions depicted as 

unsuitable for coffee cultivation over northern Thailand, Myanmar, Laos, Vietnam and the 

Philippines. Whilst these regions are less suitable in many of the models and ERA-Interim in 

comparison to further south in the domain, this model has the weakest representation of crop-

climate suitability in this area.  

To conclude, the models and, in particular, the ensemble mean, show representations of crop-

climate suitability regions that are akin to those depicted in the ERA-interim dataset. It is important 

to note, however, that whilst these plots form the basis to establish whether a region is suitable to 

cultivate a particular crop, they are based on mean climatological thresholds and climatic extremes 

such as drought or heavy precipitation events can impact negatively on yields and must also be 

considered as to the true suitability of a region for the cultivation of any particular crop.  

3.5 Model climate projections for the twenty-first century 

3.5.1 Previous studies over South-East Asia 

The IPCC Fifth Assessment report, released in 2013, suggests that temperatures over South-East 

Asia will increase under a climate change scenario. This projection is defined as very likely, 

although it is expected that considerable variation in the rate of warming within South-East Asia 

will occur (Christensen and Kanikicharla et al, 2013). In terms of rainfall projections under 
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increasing greenhouse gas emissions, the sign and magnitude of change is more uncertain. The best 

estimate of the IPCC is that, alongside strong regional variation, there is medium confidence in a 

moderate increase in annual rainfall (excluding Indonesian islands bordering the Southeast Indian 

Ocean) (Christensen and Kanikicharla et al, 2013). Both the IPCC AR4 (2007) and AR5 (2013), 

note that potential changes to tropical cyclone characteristics will impact on South-East Asia, 

specifically over the northern countries of the domain. However, modelling of cyclones is uncertain 

although the IPCC AR5 suggests that it is likely that occurrence of tropical cyclones will either 

remain stable or decrease. However, within these cyclones it is likely that maximum wind speeds 

and rainfall rates will increase (Christensen and Kanikicharla et al, 2013).   

Individual studies also provide more information about potential changes to climate over South-East 

Asia under increasing greenhouse gas emissions. Chotamonsak et al (2011) use a WRF regional 

climate model to project greater temperature increases over the region during night than day, for all 

seasons. For rainfall, the model had less success in simulating present-day conditions, but the 

projection is for increased rainfall overall, with some local exceptions during the dry season.  

Rainfall in Indonesia has a clear association with the Indian Ocean Dipole (IOD), with positive 

events being associated with droughts in Indonesia. It has been suggested that, relative to recent 

decades, a warming climate could lead to a higher incidence of positive IOD events (Cai et al, 

2013). Through this association, it has been hypothesised that rainfall in Indonesia could decrease 

(Christensen and Kanikicharla et al, 2013).  

3.5.2 Model Projections 

This study employs the RCP (Representative Concentration Pathway) 4.5 emissions scenario. This 

scenario is a radiative forcing scenario, was one of those used in the CMIP 5 modelling runs and 

represents reaching stabilisation (without overshoot) at 4.5W/m
2
 at 2100. Three time slices are used; 

the 2030s (2030-2039 inclusive), the 2050s (2050-2059 inclusive) and the 2090s (2090-2099 

inclusive). It is expected, in the case of robust models, that changes under anthropogenic forcing 

will increase in magnitude over time.  

3.5.2.1 Temperature 

Figure 3.32 shows the mean temperature anomalies for the model ensemble for the three time slices 

relative to the climatology period (1980-2005). As expected, mean temperature in South-East Asia 

are projected to increase across the domain throughout the twenty-first century under the RCP4.5, 

with the greatest projected increases present in the 2090s and no projected annual temperature 

decreases anywhere in South-East Asia. However, the projected increases are not uniform across 
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the domain. Greatest projected increases are seen to the north and south of the domain outside of the 

focus countries, over China and Australia respectively. Here projected mean temperature increases 

measure 2.6ºC to 3.0ºC per day by the 2090s. Over the focus countries the greatest projected 

temperature increases are also present during the 2090s. For the focus countries, the projected 

increases generally measure between 1.8ºC and 2.2ºC. Two exceptions are the Philippines and 

eastern Indonesia, where projected temperature increases measure from 1.6ºC to 1.8ºC by the 2090s.  
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Figure 3.32 Ensemble mean temperature anomalies over South-East Asia for the 2030s, 2050s and 2090s relative to 

1980-2005 under the RCP 4.5 scenario. 

3.5.2.2. Precipitation 

Figure 3.33 shows the projected precipitation anomalies over South-East Asia for the 2030s, 2050s 

and 2090s. Projected precipitation changes over South-East Asia are less clear cut than those for 

temperature, with both projected increases and decreases over parts of the domain. One key 

difference is that in the model ensemble changes to precipitation are relatively muted, measuring 

between -0.5mm and 1.5mm/day over all time slices. The only pattern to emerge is for a slight 

projected decrease in daily mean precipitation to the west of the domain, with the opposite 

occurring in the east and very little change over the focus countries.  
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Figure 3.33 Ensemble mean rainfall anomalies over South-East Asia for the 2030s, 2050s and 2090s relative to 1980-

2005 under the RCP 4.5 scenario. 

 

3.6 Future climate scenarios and crop growth in South-East Asia 

Applying the same approach as in previous crop-climate suitability sections, the temperature and 

rainfall threshold masks are used to examine crop-climate suitability under the RCP4.5 scenario. 

Masks are created for each of the selected CMIP 5 models and the model ensemble for each of three 

time slices (2030S, 2050S and 2090s). The same ten crops as previously examined as investigated, 

to recap these are paddy rice, palm oil, natural rubber, cassava, sugar cane, banana, mango (and 

mangosteens/guavas), coconut, maize and green coffee.  
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Due to some model bias, the thresholds for the twenty-first century time slices are created using the 

ERA-Interim crop-climate suitability thresholds as a base. First, anomalies for each individual 

model and the model ensemble for each of the three time slices are created using the climatology 

period (1980-2005) for the respective model as a base. Second, these anomalies are added on to the 

climatology values for ERA-Interim. This mitigates climatology period model bias and thus 

provides a more robust assessment of potential changes to crop-climate suitability regions across 

South-East Asia. The same thresholds for the limits of growth of each individual crop as used 

during the climatology period are employed in this section. Although there is the possibility that 

technological development in crop modification will allow crops to be grown under different 

conditions, the assumption in this work is that this is not the case.  

Figure 3.34 to 3.43 show the crop-climate suitability maps for the ensemble mean for the 2030s, 

2050s and 2090s for each of the ten crops.  

 

 

Figure 3.34 Model-ensemble derived paddy rice crop growth areas, 2030s, 2050s and 2090s 
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Figure 3.35 Model-ensemble derived palm oil crop growth areas, 2030s, 2050s and 2090s 
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Figure 3.36 Model-ensemble derived natural rubber crop growth areas, 2030s, 2050s and 2090s 
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Figure 3.37 Model-ensemble derived cassava crop growth areas, 2030s, 2050s and 2090s 

 

 

 



89 
  

 

 

Figure 3.38 Model-ensemble derived sugar cane crop growth areas, 2030s, 2050s and 2090s 
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Figure 3.39 Model-ensemble derived banana crop growth areas, 2030s, 2050s and 2090s 
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Figure 3.40 Model-ensemble derived mango, mangosteen and guava crop growth areas, 2030s, 2050s and 2090s 

 

 

 

 

 

 

 

 

 



92 
  

 

 

Figure 3.41 Model-ensemble derived coconut crop growth areas, 2030s, 2050s and 2090s 
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Figure 3.42 Model-ensemble derived maize crop growth areas, 2030s, 2050s and 2090s 
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Figure 3.43 Model-ensemble derived green coffee crop growth areas, 2030s, 2050s and 2090s 

 

Paddy rice 

For paddy rice, the crop-climate suitability region remains relatively constant under the RCP4.5 

climate change scenario. The main projected change is found over Myanmar and northern Thailand. 

Under control conditions, these regions did not show suitability to cultivate paddy rice due to 

rainfall outside the absolute required threshold. Under projected climate change, these regions are 

no longer outside of the required threshold for rainfall and now show conditions that have a crop-

climate suitability score of four to five. This represents a possible new opportunity for paddy rice 

cultivation under climate change in South-East Asia. Over the remainder of the focus countries, 

suitability for rice cultivation does not show any changes, with cultivation projected to remain 

possible.  
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Palm oil 

Unlike for paddy rice, where climate change is projected to have a positive impact on cultivation, 

for palm oil, projected climate changes under the RCP4.5 scenario is for a negative impact on crop-

climate suitability. Regions of optimal crop-climate suitability have contracted to some extent, with 

the greatest impact seen across parts of the Philippines. Under control conditions, parts of the 

Philippines saw optimal conditions for palm oil cultivation. By the 2090s under the RCP4.5 

scenario, shows a lower crop-climate cultivation score by two, implying that conditions for 

cultivation will be compromised. In contrast, over Myanmar and northern Thailand, opportunities 

for oil palm cultivation may arise.  

Natural rubber 

Ensemble crop-climate suitability for the cultivation of natural rubber under a climate change 

scenario shows some significant changes by the 2090s in comparison to the end of the twentieth 

century.  Conditions for potential cultivation over eastern Indonesia and the Philippines are 

compromised in comparison to during the control period. In contrast, and in a similar manner to the 

previous two crops under consideration, conditions for the cultivation of natural in Myanmar and 

Thailand become increasingly optimal.  

Cassava 

Under control conditions, there were optimal conditions for cassava cultivation across South-East 

Asia in the ensemble. Under the RCP4.5 scenario, also for ensemble, this is no longer the case, with 

large parts of the domain showing slightly less optimal conditions for cassava growth. However, all 

of the eight focus countries, with the exception of the central parts of the Philippines, continue to 

show optimal conditions for the cultivation of cassava by the 2090s, with the main changes located 

over ocean locations across the domain.  

Sugar cane 

For the ensemble under control conditions, a large region of the central part of the domain showed 

conditions that were unsuitable for the cultivation of sugar cane, although in the ERA-Interim 

dataset parts of the central region of the domain showed some suitability. By the end of the twenty-

first century, the model ensemble shows crop-climate suitability for sugar cane that is very similar 

to that of the control period in the ERA-Interim dataset.  

Banana 

The situation for banana cultivation is very similar to that for sugar cane; the ensemble crop-climate 
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suitability maps under climate change conditions show a projected crop-climate suitability pattern 

very similar to that seen in the ERA-Interim dataset under control conditions. This pattern is for 

optimal or near optimal conditions for banana cultivation over all of the focus countries throughout 

the twenty-first century.  

Mangoes, mangosteens and guavas 

Both the ERA-Interim and ensemble crop-climate suitability maps for the twentieth century showed 

good conditions for the cultivation of mango. Under the RCP4.5 scenario, the optimality for mango 

cultivation in the ensemble deteriorates as the twenty-first century progresses. By the 2090s, 

conditions are sub-optimal for mango cultivation over much of the domain, in particular through the 

central part of South-East Asia. Although in the time period analysed here the worst conditions are 

found over the ocean and conditions over land regions remain suitable for cultivation of mango, it is 

feasible that under a higher projected emissions increase or later into the twenty-second century, 

conditions for mango cultivation over the eight focus countries could be poor.  

Coconut 

In a similar manner to some of the other crops, conditions for the cultivation of coconut over South-

East Asia show a similar spatial pattern of optimality at the end of the twenty-first century in the 

ensemble to the ERA-Interim map during the control period.  

Maize 

Conditions for maize are projected to remain stable throughout the twenty-first century under the 

RCP4.5 in the model ensemble over South-East Asia. Whist no regions see completely optimal 

conditions, there is a crop-climate suitability score of four out of five over all of the focus countries, 

with two small exceptions where the score is lower. These exceptions are eastern Indonesia and the 

far north parts of the domain.  

Green Coffee 

In the ERA-Interim dataset, optimal conditions for the cultivation of green coffee were found over 

the eight focus countries of South-East Asia. This situation does not see a significant change under 

the RCP4.5 scenario by the end of the twenty-first century in the model ensemble. Optimal 

conditions for cultivation are still found over the focus countries, with the exception of the far west 

and east regions of Indonesia where it is slightly lower. Additionally, there is evidence for 

suitability regions to be contracting; in the current scenario this is affecting the ocean regions but 

there is the possibility that under higher emissions scenarios this could impact on crop-climate 
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suitability for coffee cultivation in South-East Asia.  

Under the RCP4.5 emissions scenario, the extent of crop-climate suitability for many of the selected 

crops across South-East Asia does not see a significant change. Where there is change to the 

optimal growth conditions, the biggest change is generally seen to the north of the domain over 

Myanmar and northern Thailand. In many cases these changes are positive, with the ensemble mean 

projection suggesting there could be increased opportunity for crop cultivation in these regions, 

particularly for natural rubber, palm oil and paddy rice. 
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