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The Impact of Temperature on Productivity and Labor

Supply: Evidence from Indian Manufacturing∗

E. Somanathan, Rohini Somanathan, Anant Sudarshan, Meenu Tewari

Cross-country studies have found that hotter years are associated with lower output

in poor countries. Using high-frequency micro-data from manufacturing firms in

India, we show that worker heat stress can substantially explain this correlation.

Ambient temperatures have non-linear effects on worker productivity, with declines

on hot days of 4 to 9 percent per degree rise in temperature. Sustained heat

also increases absenteeism. Similar temperature induced productivity declines are

replicated in annual plant output from a national panel. Our estimates imply that

warming between 1971 and 2009 may have decreased manufacturing output in India

by at least 3 percent relative to a no-warming counterfactual.
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1 Introduction

Recent studies have uncovered a systematic negative correlation between high temperatures

and aggregate output, especially in developing countries. Dell, Jones, and Olken (2012)

use a global country panel and find reductions in both agricultural and non-agricultural

output for poor countries in years with higher than average temperatures. Similarly, Hsiang

(2010) finds that temperature is correlated with lower output in the services sector in Central

America and the Caribbean. This intriguing relationship, suggestive of a direct link between

temperature and growth, may be of significant importance given new scientific evidence on

rising local and global temperatures. Anthropogenic climate change has already led to a

five fold increase in the probability of extreme temperature days over pre-industrial periods

(Fischer and Knutti, 2015). Within countries, warming due to urban heat islands has raised

city temperatures well above regional averages (Mohan et al., 2012; Zhao et al., 2014).

Isolating the specific mechanisms underlying these correlations has remained a challenge.

The impact of temperature change has been most extensively studied in the agricultural

sector where high temperatures are associated with lower yields of specific crops (Lobell,

Schlenker, and Costa-Roberts, 2011; Schlenker and Roberts, 2009; Mendelsohn and Dinar,

1999; Auffhammer, Ramanathan, and Vincent, 2006). Yet agriculture alone cannot account

for observed output declines, which are apparent in countries with both large and small

agricultural sectors. Heat effects on mortality, political conflict and thermal stress on workers

have been proposed as alternative explanations, but isolating any of these channels with

national output data is difficult.1

We present new evidence that heat stress on workers is an important mechanism through

which temperatures influence economic output. For this we collect primary data on daily

worker productivity and attendance from selected Indian firms in the cloth weaving, gar-

1Dell, Jones, and Olken (2014) review this literature.
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ment manufacture, steel rolling and diamond cutting industries. We find that high ambient

temperatures reduce the productivity and attendance of workers. We estimate output de-

clines of between 4 and 9 percent per degree on days when wet bulb globe temperatures are

above 27 degrees Celsius. The largest effects are seen for manual processes in the hottest

parts of the country. Sustained high temperatures also lower attendance. An additional

day of elevated temperatures is associated with a 1 to 2 percent increase in absenteeism of

contracted workers. This estimate turns out to be quantitatively similar to changes in time

allocation induced by warmer temperatures in the United States (Zivin and Neidell, 2014).

Interestingly, for daily wage workers, for whom the cost of occasional absences is high, we

find little correlation between temperature and absenteeism.

We augment our worker-level analysis using a nationally representative panel of manufac-

turing plants in India over the years 1998-2008. We find a non-linear relationship between

temperature and annual plant output, similar to that observed for daily worker productivity,

for this much longer time period. The value of annual factory output declines during years

with a greater number of high temperature days at a little over 3 percent per degree-day.

The size of these temperature impacts suggests potential benefits from investing in adap-

tation. We exploit the phased rollout of climate control within the garment firm we study

and find that workplace cooling effectively breaks the link between high ambient tempera-

tures and worker output, but does not eliminate temperature effects on absenteeism.2 These

benefits notwithstanding, the costs of these technologies often limit their deployment. We

conduct a survey of 150 diamond cutting and polishing firms to study investments in air-

conditioning and find that it is selectively used for labor intensive processes and those with

high value addition. These deployment patterns are consistent with the selective deployment

of costly climate control to mitigate temperature effects on worker productivity.

2These benefits may also accrue from technologies that indirectly influence temperatures. For example,
Adhvaryu, Kala, and Nyshadham (2014) suggest that there may be productivity gains from low heat lighting
options such as LEDs.
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Our empirical estimates are consistent with physiological studies of heat stress in the labora-

tory and with country panel studies. Our estimates suggest that the impact of temperature

on human beings may explain a significant portion of the observed relationship between

temperature and output in poor countries with limited climate control. Moreover, since

our data come from settings that do not involve heavy physical labor or outdoor exposure,

the productivity impacts we identify may be quite pervasive. Temperatures over the Indian

sub-continent have recorded an average warming of about 0.91 degrees between 1971-75 and

2005-2009. Based on our estimates, this warming may have reduced manufacturing output

in 2009 by 3 percent relative to a no-warming counterfactual, an annual economic loss of over

8 billion USD (Section 5). These estimates are conservative because they do not account for

the costs of incurred adaptation or capture the impacts of local urban heat islands.

The remainder of this paper is organized as follows. Section 2 summarizes the physiological

evidence on heat stress. Section 3 describes the compilation of our various data sources and

their matching with weather data. Section 4 presents results, first from firm-level micro data

and then from a national panel of manufacturing plants. Section 5 quantifies the importance

of estimated temperature effects in the context of climate model predictions for India. Section

6 concludes.

2 Mechanisms

The physics of how temperature affects human beings is straightforward. Heat generated

while working must be dissipated to maintain body temperatures and avoid heat stress. The

efficiency of such dissipation depends primarily on ambient temperature but also on humidity

and wind speed. If body temperatures cannot be maintained at a given activity level, it may

be necessary to reduce the intensity of work (Kjellstrom, Holmer, and Lemke, 2009; ISO,

1989).
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Several indices of ambient weather parameters have been used to measure the risk of heat

stress. Most widely accepted is the Wet Bulb Globe Temperature (Parsons, 1993; ISO,

1989). Directly measuring WBGT requires specialized instruments and we use the following

approximation, whenever data on humidity is available:

WBGT = 0.567TA + 0.216ρ+ 3.38,

ρ = (RH/100)× 6.105 exp

(
17.27TA

237.7 + TA

)
.

(1)

Here TA represents air temperature in degrees Celsius and ρ the water vapour pressure

calculated from relative humidity, RH.3

Laboratory studies have documented a non-linear relationship between temperature and hu-

man efficiency in performing ergonomic and cognitive tasks. At very low levels, efficiency

may increase with temperature, but for wet bulb globe temperatures above 25 degrees Cel-

sius, task efficiency appears to fall by approximately 1 to 2 percent per degree.4 These levels

are not considered unsafe from the point of view of occupational safety and are commonly

observed in developing countries (Figure A.4). Seppanen, Fisk, and Faulkner (2003) and

Hsiang (2010) provide a meta-analysis of this evidence.5

While lab estimates provide a useful benchmark, they do not adequately capture manufac-

turing environments in which the temperature-productivity relationship can be moderated

through incentives embedded in wage contracts, the varied nature of tasks performed by a

given worker, and mechanization. These factors influence both physical productivity and

worker absenteeism through changes in patterns of morbidity and time allocation. More-

over, the economic costs of reductions in the efficiency of physical processes depend on the

3Lemke and Kjellstrom (2012) compare different WBGT measures and show that this equation performs
well at approximating ambient WBGT.

4Similar effects have also been observed in some office settings, such as call centers (Seppanen, Fisk, and
Lei, 2006).

5In some sectors, such as mining, temperature and humidity exposures can be high enough to create serious
health hazards. These settings are often used for research on heat stress and for designing occupational safety
regulation (Wyndham, 1969).
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value these processes add to the final product. The data we collect allow us to examine the

multiple channels through which temperature effects operate in real manufacturing settings.

3 Data Sources

We use five independent datasets to investigate our heat stress hypothesis. Together, these

span a range of manufacturing environments with varying degrees of mechanization, climate

control, labor intensity and value addition. We cover firms with regular salaried workers as

well as firms with casual workers on piece-rate contracts.

Our high-frequency data on worker output and attendance comes from selected plants in

three industries: cloth weaving, garment manufacture and rail production. Cloth weaving

and garment manufacture are both labor-intensive but weaving workers are paid piece rates

while garment workers receive monthly salaries. Climate control is absent in the weaving

units and present in some of the garment units. The rail mill we study is highly mechanized,

with some climate control, and workers spend most of their time supervising and correcting

automated processes.

In addition to compiling worker output data, we conducted a survey of 150 diamond cutting

and polishing firms in Surat. Most of these invest in air-conditioning but only for some areas

in the plant. We examine whether there is greater deployment of climate control in tasks

that are relatively labor intensive or those that involve significant value addition. Such a

pattern could reflect their concerns with worker heat stress.

Each of our micro-data sites represents an important manufacturing sector in the Indian and

global economy. Textiles and Garments employ 12 percent and 7 percent of factory workers

in India, 90 percent of world diamond output passes through the town of Surat where we
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conducted our survey, and the Bhilai rail mill is the largest producer of rails in the world.6

Our last data set is a nationally representative panel of manufacturing plants across India.

The data comes from the Annual Survey of Industry (ASI), a government database covering

all large factories and a sample of small ones. We use multiple rounds of the ASI data

to construct a panel of manufacturing plants with district identifiers and combine annual

plant data over the period 1998-2008 with temperatures for the district in which the plant

is located. This allows us to estimate temperature effects over multiple regions and sectors

and over a longer time period than possible with our other data sets. Figure A.1 shows the

geographic distribution of ASI plants and locations of the micro-data sites.

Our data and variable construction is described below with technical details in the Appendix.

Table 1 provides a quick overview of the datasets we use.

3.1 Production and Attendance Data

Weaving Units: We use daily output and attendance for workers in three cloth weaving

units located in the city of Surat in the state of Gujarat in western India. Each worker

operates between 6 to 12 mechanized looms producing woven cloth. Workers walk up and

down between looms, occasionally adjusting alignment, restarting feeds when interrupted

and making other necessary corrections. The cloth produced is sold in wholesale markets or

to dying and printing firms. Panel C in Figure A.2 is a photograph of the production floor

in one of these units.

Protection from heat is limited to the use of windows and some fans. All workers are paid

based on the meters of cloth woven and no payments are made for days absent. For most

types of cloth, workers were paid 2 rupees per meter and the median daily production per

6For employment shares, see Annual Survey of Industries, 2009-10, Volume 1. Figures for the Surat dia-
mond industry are taken from (Adiga, 2004) and those for the rail mill are from http://www.sail.co.in/bhilai-
steel-plant/facilities.
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worker was 125 meters.7 We obtained payment slips for each day worked during the financial

year April 2012-March 2013 and digitized these to generate a worker level dataset of daily

output and attendance covering 147 workers who worked at any point during the year.

Garment Manufacturing: These data come from eight factories owned by a single firm

producing garments, largely for export. Six of the factories are in the National Capital

Region of Delhi (NCR) in North India, the other two are in Hyderabad and Chhindwara

in South and Central India respectively. Many different types and styles of garments are

produced in each factory, mostly for foreign apparel brands. Production is organized in

sewing lines of 10-20 workers and each line creates part or all of a clothing item. The lines

are usually stable in their composition of workers, although the garment manufactured by a

given line changes based on production orders. Panel B in Figure A.2 shows a typical sewing

line.

Measuring productivity is less straightforward than for weaving units because garment out-

put depends on the complexity of operations involved. However, the garment export sector

is highly competitive and firms track worker output in sophisticated ways. We rely on two

variables used by the firm’s management for this purpose: Budgeted Efficiency and Actual

Efficiency. The first of these is an hourly production target based on the time taken to

complete the desired operations by a special line of ‘master craftsmen’. The second is the

actual hourly output. We use Actual Efficiency, averaged over each day, as a measure of the

combined productivity of each line of workers, and use Budgeted Efficiency as a control in

our regression models.

There are a total of 103 sewing lines in the eight plants and our data cover working days

over two calendar years, 2012 and 2013. The median days worked by a line is 354 and we

have a total of 30,521 line-days in our data set. In addition to line output, the management

7Since payments are made strictly based on production, incentive effects on output arising from non-
linearities caused by minimum wages can be ignored (Zivin and Neidell, 2012).
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provided us with attendance records for all sewing workers. To restrict attention to regular,

full-time employees, we study absenteeism within a stable cohort of 2700 workers present

for at least 600 days over the two-year period. Unlike the weaving workers in Surat, these

workers were paid paid monthly wages which do not directly penalize workers for small

variations in productivity or occasional absenteeism.

During the period we consider, the firm was in the process of installing centralized climate

control in its plants. Production floors in five manufacturing units in the NCR were already

equipped with air washers that control both temperature and humidity to reduce wet bulb

globe temperatures. The sixth unit in the NCR did not have air-washers installed until 2014.

Workers at this site had access only to fans or evaporative coolers which are not effective

dehumidifiers. The two plants in Hyderabad and Chhindwara were also without air-washers

but average temperatures in these areas are lower than in the NCR.

The gradual roll out of air washers in the NCR allows us to compare temperature effects be-

tween units with and without climate control. Although this variation is not experimentally

induced, the different estimates are indicative of the ability of firms to mitigate temperature

impacts with workplace cooling. Even with climate control, workers continue to be exposed

to uncomfortable temperatures outside. This could influence their health and productivity

at work, as well as their attendance. With both attendance and output data, we are able to

separately examine the effects of climate control on these two dimensions.

Rail Production: The rail mill at Bhilai has been the primary supplier of rails for the

Indian Railways since its inception in the 1950s. It is located within one of India’s largest

integrated steel plants in the town of Bhilai in Central India. Rectangular blocks of steel

called blooms are made within the plant and form the basic input. They enter a furnace and

are then shaped into rails that meet required specifications. When a bloom is successfully

shaped into a rail, it is said to have been rolled. When faults occur, the bloom is referred

to as cobbled and is discarded. Apart from rails, the mill produces a range of miscellaneous
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products, collectively termed structurals that are used in large building projects. Panel A in

Figure A.2 shows part of the production line.

There are three eight-hour shifts on most days, starting at 6 a.m.8 Workers are assigned

to one of three teams which rotate across these shifts. For example, a team working the

morning shift one week, will move to the afternoon the next week and the night shift the

following week. The median number of workers on the factory floor from each team is 66.

Our production data records the team and the number of blooms rolled for each working

shift during the period 1999-2008. We have a total of 9172 shifts over 3339 working days. We

also have personnel records that allow us to relate temperatures to plant level absenteeism.

These cover 857 working days in the period February 2000-March 2003.9

The production of rails is highly mechanized and the mill runs continuously with breaks only

when machinery needs repair, maintenance, or adjustment for different products. Workers

who manipulate the machinery used to shape rails sit in air-conditioned cabins. Others

perform operations on the factory floor. This is the most capital intensive of our four data

sites and the combination of automation and climate control could limit the effects of outside

temperatures on output.

Diamond Polishing: In August 2014, we surveyed a random sample of 150 firms in the

city of Surat, the same location as our weaving units. The sample was selected from over

500 manufacturing units formally registered with the Surat Diamond Association. Diamond

polishing is an interesting contrast to weaving. Like weaving, diamond units are small and

labor-intensive, but the value of output is much higher. Perhaps for this reason, diamond

firms in Surat invest substantially in air-conditioning.

Diamond polishing can be broadly classified into five distinct operations: (i) sorting and

8Some days have fewer shifts because of inadequate production orders or plant maintenance.
9These data were first used in Das et al. (2013), which also contains a detailed account of the production

process in the mill.
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grading, (ii) planning and marking, (iii) bruting, (iv) cutting, (v) polishing. Most firms

perform all five operations, but to varying degrees. Smaller firms, for example, do more

sorting and cutting and transfer the stones to larger firms for final polishing. Labor intensity

also varies by unit and process. We asked each firm about their use of air-conditioning in

each of the five operations listed above and the number of workers and machines used in each

operation. They were also asked to rate, on a scale of 1-5, the importance of each of these

processes to the quality of final output. We use these responses to estimate the probability

of climate control investments as a function of the characteristics of different manufacturing

processes.

Panel of Manufacturing Plants: The Annual Survey of Industry (ASI) is compiled by the

Government of India. It is a census of large plants and a random sample of about one-fifth

of the smaller plants registered under the Indian Factories Act. Large plants are defined

as those employing over 100 workers.10 The ASI provides annual data on output, working

capital, input expenditures, and the numbers of skilled and unskilled workers employed. The

format is similar to census data on manufacturing in many other countries.11

A drawback of the ASI from our perspective is that it excludes small manufacturing enter-

prises not registered under the Factories Act. These units contribute about 5% to Indian net

domestic product and may have more limited means to adapt to temperature change.12 The

weaving units we study are an example. Plants surveyed in the ASI thus primarily inform

us about temperature sensitivity within larger firms in the formal sector.

We create a panel of all manufacturing plants that appeared in the ASI data during the period

10For some areas of the country with very little manufacturing, the ASI covers all plants, irrespective of
their size.

11See Berman, Somanathan, and Tan (2005) for a discussion on the measurement of variables in the ASI
and its comparability with manufacturing data in other countries.

12This figure has been computed using data from the Central Statistical Organisation cited in Sharma
and Chitkara (2006). The informal sector contributes 56.7% to net domestic product and about 9% of the
sector’s output comes from manufacturing enterprises.
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1998-2008, with each plant matched to a district in India.13 Details on panel construction

and preliminary data-cleaning operations are described in the Appendix. Our final panel is

unbalanced, with 39,763 plants in all of which 21,525 appear more than twice.

3.2 Meteorological Data

We match our daily micro-data from weaving, diamond and garment firms to climate data

from public weather stations in the same city. We use temperature and humidity measures

to compute daily WBGT. Rainfall (in mm) is available for most regions and is used as a

control in our models. For NCR weather stations our rainfall measure is the fraction of hours

reporting precipitation.

For the steel plant at Bhilai, public weather station data was unavailable for the period

for which we have production data. For this plant, and for all those in the ASI panel,

we rely on a 1◦ × 1◦ gridded data product of the Indian Meteorological Department (IMD)

which provides daily temperature and rainfall measurements based on the IMD’s network of

monitoring stations across the country. For Bhilai, we use the weighted average of grid points

within 50 km of the plant, with weights inversely proportional to distance from the plant.

For the ASI plants, we do not have exact plant co-ordinates and therefore estimate district

average daily temperature and rainfall by averaging over grid points within the geographical

boundaries of the district in which the plant is located.

A strength of these data is that they are from quality controlled ground-level monitors and

not simulated from reanalysis models.14 A limitation is that the IMD dataset does not

contain measures of relative humidity and cannot be used to compute WGBT. In examining

13Districts are the primary administrative sub-division of Indian states. There were 593 districts in India
at the time of the 2001 Census and plants are matched to a district following the 2001 census definition.

14See Auffhammer et al. (2013) for a discussion of some of the concerns that arise when using temporal
variation in climate parameters generated from reanalysis data.
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heat effects on output for the rail mill and for plants in the ASI panel, we therefore use only

the dynamic variation in temperature and rainfall.15

4 Results

4.1 Worker Productivity

Given the physiological basis of heat stress, temperature effects on productivity should be-

come apparent over fairly short periods of exposure. This makes daily data especially valu-

able in isolating heat stress from other climate factors, such as agricultural spillovers or

demand shocks, that operate over longer time scales.

For weaving and garment units, we use the daily output measures described in Section 3 to

estimate

log(Yid) = αi + γM + γY + ωW + βkWBGTid ×Dk + θRid + εid. (2)

Yid denotes output produced by worker or sewing line i on day d. Fixed-effects for the ith unit

are αi and γM , γY , ωW are fixed-effects for month, year and day of the week respectively. Rid

is rainfall. Together, these control for idiosyncratic worker productivity levels and temporal

and seasonal shocks. To capture non-linearities in the effects of heat-stress, we interact the

daily wet bulb temperature, WBGTid, with a dummy variable Dk for different temperature

ranges. This allows us to separately estimate the marginal effect on output for a degree

change in temperature within different temperature bins. We split the response curve into

15Table A.2 in the Appendix provides results from an alternative approach where we use humidity values
from climate models and combine these with the IMD gridded temperatures to approximate WBGT for all
districts.
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four wet bulb globe temperature bins: < 20◦C, < 20◦C−25◦C, < 25◦C−27◦C and ≥ 27◦C.

These breakpoints facilitate a comparison of our estimates with those in Hsiang (2010).

For the Bhilai rail mill we have three output measures per day corresponding to different

shifts across which three worker teams are rotated. Since productivity varies across night

and day shifts, we use a shift-day as our unit of observation and allow for nine team-shift

fixed effects, αts. We do not observe hourly temperatures so all shifts in a particular day are

assigned the average daily temperature.

Table 2 presents our estimates for temperature effects on worker output. Column 1 is for

the rail mill, columns 2-4 for garment manufacturing lines and columns 5-6 for cloth output

from weaving units. Estimates from climate-controlled plants are shaded. Columns 2 and 3

offer a within-firm comparison of units in the NCR with different levels of climate control.

Column 4 presents data from garment plants located in the milder climate of Hyderabad in

South India and Chhindwara in Central India. The most systematic declines in productivity

are observed for the highest temperature bin. Above 27 degrees, a one degree change in

WBGT is associated with productivity declines ranging from 3.7 percent for garment lines

in the milder climate of South and Central India, to about 8 percent for garment lines and

weaving units without climate control.

We also estimate the output-temperature relationship more flexibly using cubic splines with

four knots positioned at the 20th, 40th, 60th and 80th quantiles of the temperature distribu-

tion at each location. Figure 1 shows the predicted impact of temperature on output using

these spline fits. Output at 25 degrees is normalized to 100%. The pattern of these results

is very similar to those in Table 2, although estimates are less precise.

The clearest evidence in support of the heat-stress hypothesis comes from a within-firm com-

parison of garment manufacturing units with different workplace temperatures. Production

lines on floors without access to air-washers in the NCR show a sharp drop in output with

13
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increasing wet bulb globe temperatures in the highest temperature bin. Garment lines lo-

cated in Hyderabad and Chhindwara - where air-washers were not installed - also show a

drop in efficiency but the estimated response is smaller, most likely due to the moderate

ambient temperatures in these areas relative to Delhi. The temperature effect disappears for

units in the NCR with climate control.

In small weaving units of Surat, we find non-linear temperature effects similar to garment

manufacturing in the NCR, except that higher temperatures influence garment output for a

much wider temperature range than for weaving units, where heat effects are discernible only

in the highest WBGT bin. Although these two work environments differ on many dimensions,

part of the explanation may lie in the piece-rate contracts which push weaving workers to

maintain output levels. In contrast we see no significant impact of high temperatures on

output in the highly mechanized rail mill. The production of rails involves the heating and

casting of steel which may be directly influenced by ambient temperatures even if there is

no effect on workers. This may be one reason for the more complicated response function

for the rail mill (Figure 1).

Note that the estimated effects of temperature on output cannot be explained by more

frequent power outages on hot days. The data in all panels of Figure 1 comes from manufac-

turing settings with power backups. Additionally, for garment manufacturing in the NCR, we

compare co-located plants for whom the incidence of power outages should be similar. Weav-

ing plants reported that the electricity utility in Surat occasionally scheduled pre-announced

weekly power holidays on Mondays. Any effect of such power outages, notwithstanding the

availability of back-up power, is controlled for by the inclusion of fixed-effects for each day

of the week.
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4.2 Absenteeism

Research based on data from the United States has found that temperature influences labor-

leisure tradeoffs and the allocation of time across indoor and outdoor activities (Zivin and

Neidell, 2014). In the tropical, low-income environments we study, temperatures could in-

fluence hours worked and absenteeism both through voluntary time-allocation decisions and

because sustained heat induces fatigue and changes the disease environment.

We were able to obtain detailed histories of worker attendance for all our micro-data sites

other than the two garment plants in Hyderabad and Chhindwara. Using these absence

records (described in Section 3), we construct a time series of total absences per day and use

an exposure-response framework to model the relationship between attendance and temper-

ature. We estimate:

log(At0) = α + βEt0 + γXt0 + εt0 . (3)

At0 is the number of absences on day t0, Et0 is the accumulated heat exposure at time t0

and Xt0 includes rainfall as well as month and day of week effects.

We use three different measures of exposure. Our simplest formulation uses only contempo-

raneous temperatures as a measure of exposure. Next, we set exposure equal to the mean

of wet bulb globe temperatures experienced over the previous k = 7 days, thereby allowing

lagged temperature histories to have cumulative effects on absenteeism. We estimate sepa-

rate coefficients for different quartiles of weekly exposure measured in this way to allow for

non-linearities in the exposure-response function. Our estimates of Equation 3 using these

two measures are in Table 3.

We find heat exposure increases absenteeism for garment and rail mill workers. For the high-

est exposure quartile, a 1◦C increase in the average weekly WBGT results in a 6 percentage

point increase in absences for garment workers and a 10 percentage point increase for rail
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mill workers. In contrast, we see no absenteeism effects for weaving workers, perhaps because

they earn no wages for days absent.

In our third and most flexible specification of exposure, the entire K-day history of temper-

ature levels and the length of a hot spell together determine exposure levels. We estimate a

non-linear distributed lag model, Et0 =
∑K

0 τwkwt0−k, where τwk is the weight attached to lag

period k at the temperature level w.16 Gasparrini (2013) describes how this class of models

can be estimated with least squares using a composition of two functions f and g to trans-

form a vector of observed temperature histories into exposure levels, Et0 =
∑K

0 f ·g(wt0−k).

Here g transforms temperatures based on their lag k and f maps the resulting output to

derive total exposure. We use two independent third order polynomials to represent f and

g, yielding a flexible non-linear model, and estimate parameters τwk.17 The fitted model is

then used to predict changes in absenteeism under different WBGT trajectories.

Figure 2 illustrates two scenarios for each of the three production processes we consider. The

left column shows the predicted change in the logarithm of daily absences for a 1◦C increase

in WBGT, over a 25◦C reference, sustained for k days, with k ranging from 1 to 10. In

the right column, we plot predicted absenteeism for different temperature levels sustained

over a ten day period. We find that longer hot spells increase absenteeism for both rail

and garment workers (panels A and B). Absences increase at the rate of approximately 1

to 2 percent with every additional day of elevated temperatures. As with the simpler linear

models of Table 3, absenteeism effects on daily wage weaving workers (Panel C) are not

statistically different from zero. Interestingly, increased worker absenteeism is visible even

where the work-place itself uses climate control. These investments therefore appear to allow

only partial adaptation to the impact of temperature on labor. They mitigate productivity

16These models are an extension of distributed lag models which represent Et0 as a weighted sum of
temperatures so that Et0 = τ0wt0 + τ1wt0−1 + ...+ τKwt0−K with weights τ provided by some function of the
lag period whose parameters can be estimated from the data. The non-linear DLM allows total exposure to
be influenced by temperature levels w in addition to lag durations.

17Details on this procedure are found in Gasparrini (2013). We use the authors’ code provided in the R
package dlnm for estimation.
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losses while at work but do not prevent temperature-related changes in attendance.

We include month fixed-effects in all our empirical models and our estimates therefore rep-

resent short-run temperature impacts. We do this to isolate the role of heat stress from

other mechanisms and also because the result of long-run increases in temperature cannot

be identified separately from other seasonal factors with the type of data sets we use. In the

Appendix (Figure A.3), we show that there are seasonal changes in the availability of casual

workers during high temperature months.

4.3 Investments in Climate Control

Concerns about heat effects on workers may be reflected in the pattern of investments in

climate control technologies. We survey diamond polishing units and find both frequent use

of air-conditioning and also substantial variation in its availability across different production

areas within the same plant. We use data from 750 processes in our 150 firms to estimate the

probability of using air-conditioning for a process as a function of its (i) the labor-intensity

(ii) mechanization and (iii) importance in determining stone quality. The first of these

variables is measured by the share of the firm’s workers engaged in the process, the second

by the share of the plant’s machines used, and the third is a purely self-reported assessment

by management. As controls, we use the total number of workers to proxy for firm size, and

the years since the first air-conditioning investment.

Figure 3 summarizes our results. We find that diamond polishing units in Surat choose to

preferentially cool high value and labor-intensive processes. Our results are similar when we

include firm fixed- effects and thereby identify investment decisions by relying only on the

variation across process areas within plants. It is possible that investing in air-conditioning

reflects a form of compensation to attract higher quality workers rather than an effort to offset

negative temperature impacts. This explanation seems unlikely in this setting because wages
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Figure 3: Marginal effect of covariates on probability of seeing climate control for a single process within
the diamond production line. Bootstrapped robust standard errors. Estimated using data on 750 processes
across 150 firms.

are low, workplace activities are not physically taxing and workers move between different

production areas. Wage increases would probably be preferred to equivalent expenditures

on air-conditioning.

4.4 Annual Manufacturing Output

We use our panel of manufacturing plants from the Annual Survey of Industry (ASI) to

examine whether the temperature effects estimated from micro-data persist in the long run

and whether they characterize the manufacturing sector as a whole rather than just the

industries for which we were able to obtain worker data.

With the national panel our output measure is the value of annual - as opposed to daily -

plant output (Section 3). However we do observe temperatures for every day within the year
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and can use these to generate a version of Equation 2 based on aggregated data. Denote

by V (Td), the monetary value of plant output as a function of daily temperature, Td, and

assume that the non-linear response of output to temperature can be approximated by the

following continuous piecewise linear function:

V̄ (Td) = V̄ + θX +
N∑
k=1

βkDk(Td). (4)

V̄ is a plant intercept term and θX includes covariates other than temperature that influence

output. Dk(Td) is the number of degree days within temperature bin k for day d and are often

used to summarize temperature distributions (Jones and Olken, 2010). Their construction

is best explained with the following example. If we have three temperature bins, T ≤ 20◦C,

T ∈ [20◦25◦), T ≥ 25◦C, then a day with a mean temperature of 23 degrees contributes 20

degrees to the first bin, 3 degrees to the second bin and 0 degrees to the third bin. Using this

definition of Dk, the coefficient βk measures the linear effect (slope) of a one degree change

in temperature on output, within the kth temperature bin.

Equation 5 is an aggregated version of this daily relationship, which can be taken to the

data:

Vit = αi + γt + ωKit +
N∑
k=1

βkDitk + φWit + θRit + εit, (5)

Here Vit is the value of output produced by plant i during financial year t, αi is a plant fixed

effect, γt are time fixed effects capturing aggregate influences on manufacturing in year t, Kit

is total working capital at the start of year t, Wit is the number of workers and Rit is rainfall

in millimeters. We use working capital available to the plant at the start of the financial

year as a control rather than actual input expenditures because the latter may respond to

temperatures experienced during the year and to realized labor productivity. For example,
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lower labor productivity is likely to be accompanied by lower raw material use. Ditk is the

number of degree days in year t that lie in temperature bin k, calculated for the district

in which plant i is located. We use degree days within the three temperature bins given

in the above example to summarize the annual temperature distribution. 18 If heat stress

causes output declines, we would expect βk to be close to zero for moderate temperatures (or

even positive for low temperatures) while for higher degree-day bins we should see negative

coefficients.

We estimate Equation (5) using both the level of output as well as log output as outcome

variables. Results are in Table 4. For output levels, coefficients are expressed as proportions

of the average output level. Columns (1) and (3) contain estimates from our base specifica-

tion. Columns (2) and (4) include the total number of workers, Wit, as an additional control.

These are not our preferred estimates because employment data is both less complete and

may contain measurement errors.19

The results provide clear evidence of non-linear temperature effects. Output declined by

between 3 and 6 per cent per degree above 25◦C, depending on the specification used. For

comparison with the literature, we also estimate a linear model and report results in the

Appendix in Table A.1. For the most conservative specification, with both capital and

worker controls, we estimate a 3.1 percent decrease in output for a one degree change in

average annual temperature. Dell, Jones, and Olken (2012) find a 1.3% decrease in GDP per

degree change in annual temperature in countries that were below the global median GDP

in 1960, while Hsiang (2010) finds the corresponding number to be 2.4% in the Caribbean

and Central America.

Based on our results from micro-data, we expect heterogeneous impacts of high temperatures,

18Maximum temperatures are on average 6 ◦C higher than mean temperatures so a day with a mean
temperature of 25 ◦C can imply a substantial portion of time with ambient temperatures above 30 ◦C.

19Employment numbers are frequently missing in the ASI data. Plants may also under-report labor to
avoid the legal and tax implications associated with hiring workers.
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with the biggest production declines in manufacturing plants with high labor shares and

limited climate control. To investigate these relationships in our panel, we calculate for each

plant in our dataset, the output share of wages for each year and also the ratio of electricity

expenditures to total cash on hand at the start of the year. We use electricity consumption

as an imperfect proxy for climate control, which is typically quite electricity intensive, since

we do not observe such investments directly as we did for our four industry case studies.

We then classify our plants by the quartile to which they belong on each of these measures,

interact these quartile dummies (Qi) with mean temperature and estimate Equation (6)

to examine whether temperature effects are heterogeneous in the manner we expect. We

estimate the following model separately for labor shares and electricity quartiles:

Vit = αi + γt + ωKit + βTit ×Qi + θRit + εit (6)

Results are in Table 5. Consistent with our previous results, we find that output from plants

with higher labor shares is more strongly affected by temperature and that those with greater

electricity consumption appear less vulnerable.

In using annual plant output data, we might be concerned about other pathways by which

temperature may affect output. For example, temperature shocks might change the prices of

plant inputs, especially those coming from agriculture. It may also be that temperatures lead

to power outages which lower output. We perform the two following exercises to eliminate

these explanations as primary drivers of the temperature effects we observe.

Although most price shocks should be captured by year fixed-effects, there may be local

price changes that vary with local temperatures and affect only local inputs. The ASI

surveys allow us to investigate this to a limited degree. Plants are asked to report their most

common input materials and the per unit price for these inputs each year. We create a price

index defined as the log of the average price across the three most common inputs used by
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each plant. We use this index as the dependent variable in a fixed-effects model similar to

Equation (5). We find no evidence that input prices change in high temperature years after

controlling for year fixed effects. These results are in Appendix Table A.3.

For power supply, we control for the probability of outages using a measure of state-year

outage probabilities for India constructed in Allcott, Collard-Wexler, and O’Connell (2014).

We find our point estimates across temperature bins remain very similar (Appendix Table

A.3).

5 The Economic Costs of Gradual Warming

The Indian Meteorological Department has documented a gradual warming trend across

most parts of the country (IMD, 2015). We calculate mean annual temperatures for a five

year baseline period between 1971-1975 and for a five year period from 2005-2009. Over this

time average temperatures have risen by 0.91 degrees across India. Combining this with the

estimated mean effect of temperature on output from the nation-wide ASI panel (3.4 percent

reduction per degree from Column 4 of Table A.1), we estimate that observed warming in

the last three decades may have reduced manufacturing output by about 3 percent. The

manufacturing sector contributed about 15 percent of India’s GDP in 2012 (about 270 billion

USD), so a 3 percent decline in output implies an economic loss of over 8 billion USD annually

relative to a no-warming counter-factual.

This may be an underestimate of the full costs imposed by temperature changes in recent

years because it ignores the adaptive actions undertaken over this period. These would in-

clude air conditioning, shifting manufacturing to cooler regions, urban planning measures

designed to lower local temperatures (green cover, water bodies), building design modifica-

tions (cool roofs) and so on. Adaptation could also include techniques to reduce the intensity
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of work, or the use of economic incentives to encourage worker effort. Recent work also sug-

gests adaptive possibilities from the use of LED lighting (Adhvaryu, Kala, and Nyshadham,

2014). These measures are typically neither easy nor costless.

Measures of warming also do not sufficiently account for the presence of urban heat islands.

Heat island effects in urban areas have already led to local temperatures more than five

degrees warmer than surrounding areas (Mohan et al., 2012; Zhao et al., 2014). Since many

manufacturing units are located in these urban hotspots, this type of surface warming is

likely to significantly influence realized productivity.

Historical temperature changes aside, the economic impact of warming due to climate change

is likely to be greatest in regions of the world that also have relatively high humidity. Panel A

of Appendix Figure A.4 reproduces a map of annual wet bulb temperature maximums from

(Sherwood and Huber, 2010). Indian summers are among the hottest on the planet, along

with those in the tropical belt and the eastern United States. The areas in red in Figure

A.4 all experience maximum wet bulb temperatures that are above 25◦C. This suggests that

- absent adaptation - an increase in the frequency or severity of high WBGT days might

rapidly impose large productivity costs in these regions. Recent temperature projections for

India, under business-as-usual scenarios (specifically, the IPCC Representative Concentra-

tion Pathway scenarios, RCP 6.0 and RCP 8.5), suggest that mean warming in India is likely

to be in the range of 3.4◦C to 4.8◦C by 2080 (Chaturvedi et al., 2012).

6 Conclusions

Extreme events excepted, the economic impact of global warming has been documented

mostly through its effect on agricultural output, where high temperatures are associated

with low crop yields. The Fifth Assessment Report of the Intergovernmental Panel on
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Climate Change (Field et al., 2014) acknowledges that ‘Few studies have evaluated the

possible impacts of climate change on mining, manufacturing or services (apart from health,

insurance, or tourism)’. Our main objectives in this paper were to investigate the importance

of temperature on workplace productivity in manufacturing tasks which do not typically

involve heavy physical labor or outdoor exposure, and to examine the mechanisms by which

temperature effects occur.

We have used primary micro-data collected from a variety of work environments in India

to show that elevated wet bulb globe temperatures can have economically significant effects

on worker productivity and labor supply. Our use of daily data for identification rules out

all mechanisms other than those that operate over a short time span. By examining plants

with back-up power supply, we also eliminate power outages as a plausible alternative to

heat stress.

The net economic costs due to heat stress will depend on how much adaptation takes place

and at what cost. We have shown that climate control appears effective in breaking the

relationship between ambient temperatures and workplace productivity but not necessarily

between temperature and absenteeism. Since adaptation can be costly, we should expect

selective adoption. We have documented variable adoption of climate control across sectors,

firms and even within firms.

Greater exposure to high temperatures in the workplace and outside it seem inevitable,

especially, though not exclusively, in the emerging countries of the tropical world, both

through climate change and heat islands caused by rapid urbanization. Climate change

projections for India, under business-as-usual scenarios, predict warming in the range of

3.4◦C to 4.8◦C by 2080 (Chaturvedi et al., 2012) and satellite images of Indian metropolitan

areas show the presence of urban hotspots with temperature elevations of greater than five

degrees celsius (Mohan et al., 2012).
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The potential ramifications of our findings are large. While our study examines only the

manufacturing sector in India, the conclusion that a physiological mechanism is at work

implies that effects may be seen wherever human labor is important in the production process,

the ambient temperature is high, and climate control is expensive or infeasible. Temperature

impacts on worker productivity may be even more pronounced and widespread in sectors

such as agriculture and construction across the world, because exposure may be higher and

adaptation possibilities more limited. Observed productivity losses in agriculture that have

been attributed by default to plant growth responses to high temperatures may in fact be

partly driven by lower labor productivity. These possibilities are yet to be researched.
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Appendix: For Online Publication

A.1 Annual Survey of Industry Data Cleaning

For years between 1998-99 to 2007-08, two versions of the ASI survey data were made

available by India’s Ministry of Statistics and Programme Implementation. The first is a

panel dataset containing plant identifiers without district identifiers. The second is a repeated

cross-section containing district codes without plant identifiers. We purchased both versions

and matched observations to generate a panel with district locations for each plant. This

allows us to match each plant to weather data that is available at the level of a district. Our

final sample has 39,763 manufacturing units distributed all over India (21,525 of which are

observed in at least 3 years) and spanning all major manufacturing sectors (Figure A.1).

The following data-cleaning operations are performed on the merged ASI data to arrive at

the panel dataset used in our analysis:

1. We restrict the sample to surveyed units that report NIC codes belonging to the man-

ufacturing sector.

2. We set to missing the top 2.5 percent and bottom 2.5 percent of the distribution output

value, total workers, price index, cash on hand at the opening of the year and electricity

expenditures. This is done to transparently eliminate outliers since the ASI dataset

contains some firms with implausibly high reported values of these variables and also

many plants with near zero reported output.

3. We remove a small number of manufacturing units that report having less than 10

workers employed. This represents a discrepancy between the criterion used to select

the survey sample and reported data. Such discrepancies may be associated with false

reporting since firms with less than 10 workers are subject to very different labor laws
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and taxation regimes under Indian law.

4. We mark as missing all observations with zero or negative values of output, capital,

workers or raw materials used and remove duplicated year-firm ID pairs.

5. We drop plants where district locations change over the panel duration and drop ob-

servations not in the manufacturing sector.

A.2 Weaving Workers Data Cleaning

Output data for weaving workers was obtained by digitizing payment slips for three firms.

We found some instances of payment slips reporting very low or zero cloth woven in the day

or of implausibly high levels of output. We therefore trim the bottom and top 2.5 percent

of daily output measures (corresponding in the data to 3 meters of cloth as a lower bound

and 346 meters of cloth as an upper bound).

A.3 Additional Results

Annual Average Temperature and Manufacturing Output

The model in Equation 5 allows for a non-linear (or piece-wise linear) output response to

temperature using four temperature bins. Here we present results from the simpler linear

specification. Much of the country-level literature estimates a linear model because degree

days cannot be computed for all countries. The estimates in this section facilitate a com-

parison of our findings with other studies. We estimate the following model:

Vit = αi + γt + ωKit + φWit + βTit + θRit + εit (7)
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Figure A.1: Distribution of ASI plants over Indian districts and location of micro-data sites
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Figure A.2: Production floor images from A: Rail mill, B: Garment manufacture plants, C: Weaving units

where Tit is the average temperature during the financial year t (April 1 through March 31)

and the other variables are as in (5). Estimates are in Table A.1.

Using estimated WBGT with the ASI panel

The impact of temperature degree days on output in Table 4 used temperature data rather

than WBGT because measures of relative humidity are not available for all districts over the

ten year period covered by our manufacturing plant panel. An alternative is to approximate
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WBGT using estimates of average daily relative humidity from reanalysis models. This is not

our preferred approach since reanalysis datasets are not normally calibrated to accurately

estimate relative humidity - certainly not on a daily basis - and therefore this approach may

increase rather than decrease measurement error, particularly since our estimation relies on

temporal variation rather than cross-sectional comparisons.

Nevertheless these results make for a useful robustness check. Table A.2 presents results

from models similar to those in Table A.1 using estimated WBGT measures calculated using

Equation 1 and using daily long run average measures of relative humidity from the NCEP/

NCAR reanalysis datasets. Note that this output provides an average measure for each day

but not temporal variation from year to year. This may be preferable in our context since

this means temporal variation is still driven by the better measured temperature parameters.

At the same time absolute temperatures are re-weighted across days of the year and across

spatial locations to account for varying relative humidity levels.

Price Shocks and Power Outages

In this section we examine two mechanisms other than heat stress that might potentially

account for the temperature-output link in the ASI data (reported in Table 4). We check

robustness of the temperature effect to the inclusion of a control for power outage and

examine whether local input prices respond to local temperature shocks. Table A.3 reports

both results.

Column 1 provides results for a regression of a price index computed for each plant on

temperature (controlling for plant fixed effects). Formally we estimate the model below

where Pi,t is the log of the plant input price index and other variables are the same as in

Equation 7.

42



T
ab

le
A

.2
:

E
ff

ec
t

o
f

W
et

B
u

lb
G

lo
b

e
T

em
p

er
a
tu

re
o
n

M
a
n
u

fa
ct

u
ri

n
g

In
d
u

st
ry

O
u

tp
u

t

D
ep
en

d
en

t
va
ri
a
bl
e:

P
la

n
t

O
u

tp
u

t
V

a
lu

e
L

o
g

P
la

n
t

O
u

tp
u

t
V

a
lu

e

(1
)

(2
)

(3
)

(4
)

(5
)

A
n

n
u

al
W

et
B

u
lb

G
lo

b
e

T
em

p
er

at
u

re
−
.0

5
0
∗∗

∗
−

0
.0

5
1
∗∗

∗
−

0
.0

4
3
∗∗

∗
−

0
.0

3
8
∗∗

∗
−

0
.0

3
2
∗∗

∗

(0
.0

1
5
)

(0
.0

1
4
)

(0
.0

1
4
)

(0
.0

1
2
)

(0
.0

1
1
)

ra
in

fa
ll

0.
0
0
8
∗∗

0
.0

0
4
∗

0
.0

0
3

0
.0

0
3
∗

0
.0

0
2

(0
.0

0
3
)

(0
.0

0
2
)

(0
.0

0
2
)

(0
.0

0
2
)

(0
.0

0
1
)

ca
p

it
al

0
.3

8
0
∗∗

∗
0
.3

4
1
∗∗

∗

(0
.0

0
9
)

(0
.0

0
9
)

lo
g(

ca
p

it
al

)
0
.3

7
3
∗∗

∗
0
.2

9
9
∗∗

∗

(0
.0

0
6
)

(0
.0

0
5
)

w
or

ke
rs

0
.0

0
2
∗∗

∗

(0
.0

0
0
1
)

lo
g(

w
or

ke
rs

)
0
.4

0
9
∗∗

∗

(0
.0

0
7
)

C
ap

it
al

C
on

tr
ol

s
N

Y
Y

Y
Y

W
or

ke
r

C
on

tr
ol

s
N

N
Y

N
Y

U
n

it
s

3
9
,7

6
3

3
9
,7

6
3

3
9
,7

6
3

3
9
,7

6
3

3
9
,7

6
3

R
2

0
.0

0
7
6

0
.4

6
1
5

0
.4

8
7
6

0
.6

7
0
5

0
.6

5
9
5

N
ot

es
:

1.
A

ll
m

o
d

el
s

in
cl

u
d

e
p

la
n
t

an
d

ye
a
r

fi
x
ed

eff
ec

ts
;

2
.

A
re

ll
a
n

o
-B

o
n

d
cl

u
st

er
ro

b
u

st
er

ro
rs

(A
re

ll
a
n

o
,
1
9
8
7
);

3
.

C
o
effi

ci
en

ts
fo

r
m

o
d

el
s

1-
3

ar
e

ex
p

re
ss

ed
as

p
er

ce
n
ta

g
es

o
f

av
er

a
g
e

o
u

tp
u

t
le

ve
l;

4
.

∗ p
<

0
.1

;
∗∗

p
<

0
.0

5
;
∗∗

∗ p
<

0
.0

1

43



Working Paper

Pit = αi + γt + ωKit +
N∑
k=1

βkDk + φWit +Rit + εit (8)

Note that the price index Pit is created only for ASI plants where input price data was

reported. The price index is computed by averaging reported prices for the three most

important reported inputs for each plant in each year and taking the log of the resulting

price. Input price information is missing in about 28 percent of survey responses. In addition

we also drop the top 2.5 percent and bottom 2.5 percent of plants within the computed input

price distribution to remove outliers with very low or high reported input prices.

To control for power outages we download data made publicly available by (Allcott, Collard-

Wexler, and O’Connell, 2014) and reproduce their proxy measure of state-year power outages

that they construct from panel data on state-wise assessed demand and actual generation re-

ported. We use this as a control for the intensity of power outages that might be experienced

by all plants in a state and introduce this as an additional control in a specification similar

to Equation 5. As Table A.3, Column 2 makes clear, our temperature response estimates

seem robust to the addition of the outages control.

Seasonal Patterns in Absenteeism

Interviews with weaving firm managers in Surat revealed that hiring daily wage workers for

industrial work during the summer months was difficult. Managers claimed that during the

hottest months, daily wage workers preferred to go home to their villages and rely on income

from the National Rural Employment Guarantee Scheme rather than work under the much

more strenuous conditions at the factory. Some owners said they were actively considering

the possibility of combating this preference for less taxing work by temporarily raising wages

through a summer attendance bonus.
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Table A.3: Testing for price shocks and robustness to power outages

Dependent variable
Input Price Index Log Plant Output

(1) (2)

Below 20◦C 0.044 −0.018
(0.085) (0.024)

20◦C to 25◦C 0.125 −0.028
(0.078) (0.023)

Above 25◦C 0.066 −0.035∗∗

(0.048) (0.015)
rainfall 0.004 0.003∗

(0.006) (0.002)
power outages −0.044

(0.079)

Number of Units 39,763 39,763
R2 0.685 0.202

Notes: 1. All models include plant and year fixed effects and capital controls; 2. Arellano-
Bond cluster robust errors (Arellano, 1987); 3. Outages measure is a state level proxy as
estimated in Allcott, Collard-Wexler, and O’Connell (2014); 4. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Figure A.3 in the Appendix suggests there may be some truth to this narrative. We see

seasonal reductions in the attendance of daily wage weaving workers (Panel A), concentrated

in high temperature months. These seasonal patterns are absent for the garment workers

who have long term employment contracts (Panel B). It is possible that formal employment

contracts - while reducing the costs to taking an occasional day of leave - significantly increase

the opportunity cost of switching occupations for extended periods of time. Thus, when

accounting for possible longer term responses to temperature, formal employment contracts

might do better at retaining labour than daily wage arrangements. This is an area that

would benefit from further research.

Climate Model Forecasts for India

Panel A of Appendix Figure A.4 reproduces a map of annual wet bulb temperature max-

imums from (Sherwood and Huber, 2010). It is seen that Indian summers are among the

hottest on the planet, along with those in the tropical belt and the eastern United States.
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Figure A.3: Worker attendance by month for daily wage workers in weaving units (Panel A) and regular
workers in garment manufacture units (Panel B)

The areas in red in Figure A.4 all experience maximum wet bulb temperatures that are above

25◦C. This suggests that - absent adaptation - an increase in the frequency or severity of

high WBGT days might rapidly impose large productivity costs in these regions. Recent

temperature projections for India, under business-as-usual (between RCP 6.0 and RCP 8.5)

scenarios, suggest that mean warming in India is likely to be in the range of 3.4◦C to 4.8◦C

by 2080.

Panel B of Figure A.4, (left axis), plots projections of the long run change in the annual
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temperature distribution for India from two climate models: (i) the A1F1 ”business-as-usual”

scenario of the Hadley Centre Global Environmental Model (HadGEM1) from the British

Atmospheric Data Centre and (ii) the A2 scenario of the Community Climate System Model

(CCSM) 3, from the National Center for Atmospheric Research. As is evident, the predicted

increase in degree days is concentrated in the highest temperature bins. We overlay (right axis

of Panel B of Figure A.4) our estimated marginal effects of temperature on manufacturing

output using the ASI data from Table 4 (column 1). The temperature range where we

estimate significant negative productivity impacts from an additional degree day is precisely

the range where the largest increases in degree days are predicted by climate models.
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Figure A.4: Panel A: Estimated annual wet bulb globe temperature maxima, 1999-2008. Source: Sherwood
and Huber (2010). Panel B: Projected temperatures under a business as usual climate change scenario for
India. Source: Burgess et al. (2011). Overplotted lines denote estimated productivity impacts of temperature
from Table 4, Column 1. Solid segments imply statistically significant effects
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