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A Dynamic Economic Model of Soil Conservation 

Involving Genetically Modified Crop 

 
Amrita Chatterjee 

 

 Abstract 

 
This paper attempts to model the positive role of cultivation of 
Genetically Modified (GM) crop with its soil-anchoring root-characteristic 
and use of conservation-tillage technology, in saving organic matter 
contents in the topsoil and reducing soil erosion. In a dynamic 
optimization framework the farmer produces an optimal combination of a 
GM and a Non-GM variety of the same crop at the steady state, though 
the steady state is approached most rapidly by producing a single crop. 
The improvement in the capacity to anchor the soil and an increase in 
organic matter content in top-soil will raise the long run soil stock under 
certain conditions. However, the policies to increase R&D investment in 
genetic modification and imposition of an input subsidy on GM sector will 
lead to an increment in area under GM cultivation though their effect on 
long run soil stock is uncertain. 
 
Keywords: Dynamic Optimization, Genetically Modified crops, soil 

erosion, soil conservation, steady state. 
 
JEL Codes:  C61, C62, Q2, Q16, Q28 
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INTRODUCTION 
 

The problem of soil erosion in the cultivated land is of great concern for 

years. Inappropriate agricultural production technology and 

indiscriminate use of chemical pesticides can lead to loss of topsoil 

through erosion, loss of organic matter through oxidation, soil 

compaction, loss of nutrients, accumulation of salt and trace elements 

and soil toxicity. It also increases runoff of fertilizers and pesticides to 

surfaces and ground water. Thus soil degradation has both direct and 

indirect negative effects on soil productivity and the environment 

(through water pollution) respectively.  Therefore, soil conservation has 

to be an essential part of crop production to ensure agricultural 

sustainability, which means the attainment and continued satisfaction of 

human needs for both current and future generation. There have been a 

number of traditional methods which are part of soil conservation 

management system, which help to maintain and improve soil resource. 

Use of rotational cropping pattern, crop residue management and 

conservation buffer and structures are the most eminent examples of 

traditional conservation practices (Magleby, 2002). 

 

Genetically modified herbicide tolerant crops, a product of 

modern plant biotechnology, may fruitfully be utilized in the crop residue 

management practices especially in low-till soil conservation farming 

system. The tillage system, that leaves substantial amount of crop 

residue on the soil surface, reduce erosion through wind and rainfall, 

increase water filtration, moisture retention and raise the level of organic 

matter in the top soil (Dick and Daniel, 1987; Edwards, 1995). By 

introducing herbicide tolerant GM crops in conservation tillage program 

(i.e., .no-till or low-till) farmers can apply herbicides, if needed, to control 

weeds without affecting the main GM crop and get economic benefit. For 

effective utilization of conserved soil stocks, impetus has been given on 

plant root characters (Skaggs and Shouse, 2008). Therefore, GM crops 

having longer and voluminous roots will be beneficial for binding and 
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absorbing nutrient particles with the soil. GM crops having this specific 

root structure would be needed in no-till farming in the situation if the 

conserved moisture and nutrients are in variable depths of the soil. The 

present paper introduces a new approach in the traditional soil 

management system of conservation tillage through the involvement of 

herbicide tolerant GM crops with specific root characters, using a dynamic 

economic modeling, as soil management is a dynamic process. 

 

The pioneering contribution in the area of dynamic economic 

modeling of soil conservation is by Oscar Burt (1981) who applied 

dynamic optimization technique in the economics of soil conservation. 

Taylor et al. (1986), however, criticized Burt’s work as he did not 

consider the conservation tillage or other tructural activities as decision 

variable in erosion control.  McConnell (1983) formulated a theoretical 

model of optimal control to derive the optimal inter-temporal path of soil 

use and suggested that in presence of an efficient capital market and 

equal private and social discount rate, the private inter-temporal path of 

soil use will converge to that of the society. McConnell’s work has been 

criticized on the ground that in presence of market imperfection or non-

existence of market in developing countries or even in presence of 

perfect market the private and social discount rates may not be equal 

(Kiker and Lynne, 1986). Walker (1982) formulated a damage function to 

evaluate the profitability of conservation tillage over the erosive activities 

of a single crop growing farmer and later incorporated the long-run cost 

of erosion in that function and also its empirical application to evaluate 

conservation tillage (Walker and Young, 1986). Barrett, 1991; La France, 

1992; Clarke, 1992 and Hu et al., 1997 extended McConnell’s model to 

examine whether the change in output or input  price affect the farmer’s 

optimizing behavior for soil conservation. With the proposition that the 

rate of soil loss can be curbed by having a diversified production system 

(without mentioning criteria of choosing a crop in terms of any specific 

soil-conserving feature), Goetz (1997) have derived “the optimal private 

and social inter temporal path of soil use” and the determined the 
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optimum crop mix. A rather recent work of Lankosky et al. (2006) 

examines both theoretically and empirically the private profitability and 

social desirability of conventional tillage and no-till farming by taking into 

account crop yield, production cost and nutrients and herbicide run-off 

damages. The prominent empirical works showed (i) the  implications  of 

the of agricultural policies  on land degradation and soil quality 

improvement from input –output data via a dynamic production model 

(Kim et al., 2000), (ii) the role of sustainable agricultural practices with 

respect to soil conservation ( Castano et al , 2005), (iii) the need to 

incorporate the role  of  output diversification, land tenure, and human 

capital formation as effective instruments in increasing farm income, 

determined simultaneously by farmer’s decision to adopt soil 

conservation, while framing  the investments in natural resource 

management projects by governments and multilateral development 

agencies (Bravo-Ureta et al, 2006), (iv) the importance of the  policies for 

efficient land-use  and management through technology development  

(Pannell ,2009).  

 

 In the existing literature on the economics of soil conservation, 

the use of GM crop cultivation as part of output diversification has not 

been taken under consideration.  In the present paper it is assumed that 

farmers cultivate both GM and non–GM variety of different or of the same 

crop in specific situations. Such an assumption of co-existence of GM and 

Non-GM crop is not an unrealistic one given the fact that the overall real 

world experience shows that GM crops have successfully coexisted with 

conventional and organic crops (Brooks, 2004)1. This paper may be 

considered as the first attempt to model the impact of a particular 

                                                 
1 Coexistence as an issue relates to the principle that the farmers should be able to cultivate freely 

the agricultural crops they choose, be it GM crops, conventional crops or organic crops using 

the production system they prefer (Commission of the European Communities, 2003).There are 

evidences from EU of the co-existence between GM and non-GM in a viable way. In Spain, 20-
25000 ha of GM maize is cultivated by farmers in areas where conventional and organic maize 

are also produced (Schiemann, 2003). In North America the states like Iowa and Minnesota 

with the greatest concentration of organic soybeans and maize are also the states with above 
average penetration of GM crop (Brooks, 2004).  
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feature such as the soil-anchoring longer and voluminous roots of a GM 

crop and use of conservation tillage technology in improving the long run 

soil stock. . Applying Goetz’s model of crop diversification we determine 

the optimum cropping pattern of a farmer who cultivates a mix of GM 

and non-GM varieties of the same or different crops. The paper has also 

addressed a few important policy issues such as the role of the R&D 

investment in genetic modification and imposition of input subsidies. 

Though any specific area of operation is not mentioned here, this 

theoretical model is applicable to rain-fed and irrigated soils for both 

conservation and efficient use of conserved stock. 

 

 The paper is structured as follows. Section 2 and 3 present the 

economic model and the producer’s optimization exercise whereas 

section 4 and 5 contain the stability and policy analyses respectively. The 

conclusions are drawn in section 6. 

 

THE ECONOMIC MODEL 

Let crop 1 be the GM crop and crop 2 be the Non-GM variety of the 

same/different crop. The per hectare production function of a crop is 

given by 

        )),(,,( ii

i

i

i

i RMzsfq                                                     (1)        

                                                                                      

where iq output of the i th crop, s = overall soil depth , iz index of 

inputs, ),( ii

i RM state of technology which is a function of iM i.e. % 

of organic matter in the  topsoil and iR  i.e. R& D investment in 

developing the  i th crop. Burt (1981) has used depth of topsoil and the 

percentage of organic matter in the top 6 inches of the soil as the two 

state variables in his dynamic model as these two are the variables 

directly associated with soil erosion, even if he admits that there are 

many other variables contributing to plant nutrients and soil chemistry. 
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Here the overall soil depth is used as a state variable in the dynamic 

optimization problem (discussed later) and the percentage of organic 

matter in the topsoil has been introduced in the state of technology as it 

is supposed to reflect the impact of conservation tillage. Here we note 

that, due to the use of this low or no-till farming in GM crop production, 

the organic content in the land devoted to GM crop will be much higher 

than that of its Non-GM counterpart, which does not use any soil 

conserving technology. Now, following McConnell (1983) and Goetz 

(1997), the composite input index has been incorporated in the 

production function. An alternative approach can be followed, as 

McConnell mentioned, by dividing the composite input vector into two 

types: productive inputs those increase soil loss and soil conserving 

inputs those prevent soil depletion. As we are mainly focusing on the soil 

conserving technologies, any such complication is avoided.  

 

The assumptions regarding the producion functions are as 

follows: 
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where the subscripts imply the partial derivatives with respect to the 

variable. The production function is strictly concave in s, iz  and 
i  such 

that D is a negative definite Hessian. Here we have assumed that 
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marginal productivity of the inputs increase with more soil and 

improvement in technology such that 0i

szi
f  and 0i

z i
i

f


.Moreover 

the inputs, technology and soil are essential for production. The minimum 

soil depth required for agricultural production is given by s , whereas 

beyond a certain soil depth s~ production will not increase with soil depth. 

 

The low organic content of soil reduces the infiltration and 

permeability as well as the stability of the soil particles such that soil can 

easily be destroyed byrain or wind leading to increased run-off and 

erosion of subsoil (Troeh et al., 1991).  Hence we introduce the following 

per hectare soil erosion function which can be affected by the soil depth, 

inputs used as well as the root characteristics of the respective plant:  

 

 )),(,,(
ici

i

i

ii RMzshh                                               (3) 

 

where ),(
ici

i RM  efficiency factor or state of technology that is a 

function of % of organic matter in the topsoil and the root characteristic 

(
icR ) of the respective plant with   being the % of that feature of the 

root that helps to prevent soil erosion. We assume the following 

characteristics of the erosion function:  
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 The erosion function is strictly convex in s, iz  and 
i  such that 

1D  is a positive definite Hessian. As mentioned earlier soil depth reduces 

erosion such that   0i

sh . Increase in input use and tillage makes soil 

more erosion prone suggesting  0i

zi
h  . The structural change of the 

soil due to rain aggravates the soil erosion with decrease in soil depth 

(Troeh et al., 1991) leading to 0i

ssh .With intensification of input use 

erosion increases, though a simultaneous addition of soil prevents that to 

some extent such that 0i

szi
h . As far as the technology is concerned 

both organic matter content and the root characteristic help to prevent 

the soil erosion as reflected in 0i

z i
i

h


. But it can be noted here that 

the root characteristic of GM crop helps much more than that of the Non-

GM variety to prevent soil erosion. Finally, an accumulation of soil after 

s


does not change the magnitude of soil loss. 

 

Here we must take note of the fact that neither the production 

function nor the erosion function includes the soil conserving 

technological aspects, such as low-till farming and crops with specific root 

character, in the earlier works of Clarke(1992), LaFrance(1992) and 

Goetz(1998), though soil conserving inputs are considered. We must also 

highlight the fact that the role of R&D investment in agriculture was 

absent in all these literatures which has captured our attention and has 

been included in the production function since the required genetic 

modification calls for a lot of research.  

 

 Since the land is divided between two segments to cultivate the 

two varieties of the same crop, we assume that x is the percentage of 

land devoted to GM variety whereas (1-x) is the devoted to the Non-GM 

variety. We also assume that 
21 ff  and

21 hh  . 

 



8 

Following Goetz we introduce the soil genesis function:  

       0)ˆ(,0,0),(  sGGGsGG sss                                   (5)                                                                                                

 

According to Troeh et al (1980) genesis of soil is a decreasing 

function of soil depth suggesting 0,0  sss GG .  ŝ  is the level of soil 

depth beyond which soil does not grow any more and ŝ > ss


,~ . 

 

The dynamics of the soil can be stated as follow   

)()1))(,(,,()),(,,(
21 2

2

2

2

1

1

1

1 sGxRMzshxRMzshs cc    (6)                                                    

 

PRODUCER’S OPTIMIZATION 

The producer maximizes the present discounted value of net returns from 

cultivation. Thus the farmer’s problem can be formulated as 

       max 

    dtxzpRMzsfpxzpRMzsfpe
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)()1))(,(,,()),(,,(
21 2
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1

1

1 sGxRMzshxRMzshs cc    

 ]1,0[,2,1,0)0( ,0  xizss i                                                   (7)                                                                                          

 

where 21,, zzx are the control variables and s is the state variable. >0 

is the private rate of discount, 2,1,0  ip
iz

 is the per unit cost of 

input, 2,1, ipi is the constant price of crops 1 and 2. Here, we want to 

assume that, there is no additional effort and cost incurred due to the 

joint production of GM and non-GM varieties. 
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The current value Hamiltonian is given by 

                       

   
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Taking into account the constraints on the control variable we 

get the Lagrangian: 

xxHL 21 )1(    

 

The optimal values of the control variables are associated with 

the costate variable )(t and the Lagrange multipliers .2,1),( iti  The 

solution of the problem must satisfy the following necessary conditions: 
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Moreover the optimal values of the control variables and the Lagrange 

multiplier must satisfy the Kuhn-Tucker conditions 0,0  ii
L  , 

2,1,0
1

 iLi   and 0,0  iz zL
i

, 2,1,0
1

 iLz zi .  The 
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constraint qualification is satisfied due to the linearity of the restriction in 

x and iz , i=1,2. The transversality conditions are  

0)()(,0)(  TTsT                                                               (14) 

 

 can be interpreted as the shadow price or user cost of soil 

depth. Therefore the necessary condition (9) for 021  , implies 

that the optimal allocation of land between two varieties requires the 

difference between the net return and the cost of soil erosion to be same 

for both the varieties. The conditions (10) and (11) state that with iz >0, 

the value of marginal product of input should equal the marginal cost of 

inputs and soil erosion. 

 

Existence of the Optimal Control 

To verify the sufficient condition for optimization we rewrite the 

Hamiltonian as: 

 

Here we note that, )),(,,( ii

i

i

i RMzsf  is strictly concave and 

)),(,,(
ici
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i

i RMzsh  is strictly convex in state and control variables. 

)(sGG  is also strictly concave in the state variable. Since negative of 

a convex function is a concave function, H, being sum of concave 

functions, is strictly concave in state and control variables 

with .0)( T Thus the Mangasarian sufficiency condition (Chiang, P-

214) is satisfied. This condition along with the boundary conditions 

guarantee the existence of unique optimal solution to this control 

problem and the necessary conditions in (10)-(14) characterize the 

optimal solution to the problem. 
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The Optimal Path 

The linearity of H in x allows us to define a switching function,  for the 

determination of the optimal trajectories of x. The function is given by: 
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When the net return minus cost of soil erosion for crop variety 1 

exceeds that of crop variety 2 the farmer chooses the first one. The 

choice of variety 2 can be explained similarly. If the net returns minus 

costs are equal for both the crops then x is undetermined within the 

interval [0,1]. 

 

From the theory of optimal control it is known that the singular 

path ( 0,0    ), if exists will be attained by the Most Rapid 

Approach Path (MRAP) (Hartl and Feichtinger, 1987). Accordingly we 

reach the first proposition: 

 

Proposition 1: A singular path for ]1,0[x is given by 
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2

211

1

1

1

1

sGxRMzshxRMzsh

xRMzsfpxRMzsfp

scscs

ss








 (17) 

 

It is the same condition which we get in the Steady state of the system 

of equations (12) and (13) subject to (9)-(11). No other singular path 
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exists other than the steady state provided 
sH

H

x

xs






 holds over 

the entire planning horizon. 

 

The proof of the above proposition is given in the appendix. The 

economic interpretation of the condition suggests that value of the 

marginal increment in soil depth equals the marginal cost of soil erosion 

where the cost includes the private discount rate as well as the marginal 

erosion minus the marginal soil genesis evaluated at shadow price of the 

soil. 

 

We now analyze the optimal trajectories for 21,, zzx  and s in 

Figure 1. Here we impose the restriction that 
21 hGh   which means 

the GM variety saves the land from getting eroded to a greater extent 

compared to the Non-GM variety. For
*

0,0 ss  , it is optimal to build 

up the soil stock with the cultivation of GM variety until 
*s i.e. the steady 

state value of the variable is reached. For
*

0,0 ss  , it is optimal to 

deplete the soil stock by cultivating the Non-GM variety till the steady 

state is reached. In figure 1 we depict the case of 
*

0,0 ss   and 

.2,1,0  if i

szi
 By employing implicit function theorem we obtain 

0

11

11 




zz

sz

H

H

s

z
which implies that 1z increases over time until the 

steady state soil stock is reached. After a certain time period the steady 

state values of 21,, zzx and s are reached. So the steady state is 

approached by cultivating a single crop but at the steady state 

equilibrium both the crops are cultivated. In other words even if the 

farmer produces either of the two varieties of the crops, steady state is 

approached most rapidly where the profit maximizing farmer produces an 

optimal crop mix. So the steady state implies crop diversification and that 
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two with crops having soil conserving features. Therefore this analysis 

shows a farsighted profit maximizing farmer the way to produce an 

optimal crop mix as well as the optimal input intensity.   

 

Figure 1: Graphs in (t, x); (t, z 1 ); (t, z 2 ) and (t, s) Plane 

 

STABILITY ANALYSIS 

Equation (16) and proposition 1 suggests that x is a piecewise constant 

function and we now analyze the set of differential equations (12) and 

(13) for a constant x. 

 

For stability analysis we reduce the first order conditions to a pair 

of differential equations in and s, assuming x as a constant. Since 

),(

),(

21

21

zz

HH zz




does not vanish over its entire domain (12) and (13) can 

t 

x 

*x
 

1 

s 

*s
 

t 

1z

 

*

1z

 

2z

 

*

2z

 

t 

t 
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be solved globally and uniquely for );,(ˆ szz ii   

where ),,,,,,,,( 212121 21
 RRMMpppp zz . 

 

The elements of the Jacobian matrix J for the system of the 

equations (12) and (13) are given by                












































s

s

s

s

J  where 

 

s

z
xRMzsh

s

z
xRMzsh

sGxRMzshxRMzsh
s

s

czcz

scscs















2
2

2

2

21
1

1

1

1

2

2

2

2

1

1

1

1

ˆ
)1))(,(,ˆ,(

ˆ
)),(,ˆ,(

)()1))(,(,ˆ,()),(,ˆ,(

2211

21






(18)    

 

 






 











 2

2

2

2

21

1

1

1

1
ˆ

)1))(,(,ˆ,(
ˆ

)),(,ˆ,(
2211

z
xRMzsh

z
xRMzsh

s
czcz


 (19) 

 

   

s

z
xRMzsh

s

z
xRMzshsG

xRMzshxRMzsh

s

z
xRMzsfp

s

z
xRMzsfp

xRMzsfpxRMzsfp
s

cszcszss

csscss

szsz

ssss




























2
2

2

2

21
1

1

1

1

2

2

2

2

1

1

1

1

2
22

2

2

2

2
1

11

1

1

1

1

22

2

2

2

211

1

1

1

1

ˆ
)1))(,(,ˆ,(

ˆ
)),(,ˆ,()](

)1))(,(,ˆ,()),(,ˆ,([

ˆ
)1))(,(,ˆ,(

ˆ
)),(,ˆ,(

)1()),(,ˆ,()),(,ˆ,(

221

21

21










 (20)  
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)(
ˆ

)1))(,(,ˆ,(
ˆ

)),(,ˆ,(

)]1))(,(,ˆ,()),(,ˆ,([

ˆ
)1))(,(,ˆ,(

ˆ
)),(,ˆ,(

2

2

2

2

21

1

1

1

1

2

2

2

2

1

1

1

1

2

22

2

2

2

2

1

11

1

1

1

1

221

21

21

sG
z

xRMzsh
z

xRMzsh

xRMzshxRMzsh

z
xRMzsfp

z
xRMzsfp

scszcsz

cscs

szsz














































(21)  

 

Now the trace of the Jacobian Matrix is given by 

T=











 

s

s
   

 

Applying implicit function theorem to equation to (10) and (11)   

22

2

11

1

22

2

11

1 2121
ˆ

,
ˆ

,
ˆ

,
ˆ

zz

z

zz

z

zz

sz

zz

sz

H

Hz

H

Hz

H

H

s

z

H

H

s

z 






















 

 

Therefore, T= >0. 

 

So, the sum of the Eigen values is positive which means at least 

one Eigen value is positive. If both the Eigen values are positive then soil 

stock will grow infinitely large which is not feasible. Thus one Egien value 

must be negative and that leads us to the following proposition. 

 

Proposition 2:  The equilibrium point of the system of equations (12) 

and (13) subject to (9)-(11) can be characterized for a constant x by a 

local saddle point. 

 

Now as per Goetz (1998) and LaFrance (1992) we impose the restriction 

of constant soil loss such that  

   2,1,0)()),(,,(
1

 isGRMzsh sci

i

i

i

s  . 

Thus the elements of the Jacobian matix become: 
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s

z
xRMzsh

s

z
xRMzsh

s

s
czcz













 2

2

2

2

21

1

1

1

1
ˆ

)1))(,(,ˆ,(
ˆ

)),(,ˆ,(
2211




(18.1)                                                                              

  







 











 2

2

2

2

21

1

1

1

1
ˆ

)1))(,(,ˆ,(
ˆ

)),(,ˆ,(
2211

z
xRMzsh

z
xRMzsh

s
czcz


(19.1) 

     

 
   

s

z
xRMzsfp

s

z
xRMzsfp

xRMzsfpxRMzsfp
s

szsz

ssss















2

22

2

2

2

2

1

11

1

1

1

1

22

2

2

2

211

1

1

1

1

ˆ
)1))(,(,ˆ,(

ˆ
)),(,ˆ,(

)1()),(,ˆ,()),(,ˆ,(

21





(20.1)   

               

                          























 2

22

2

2

2

2

1

11

1

1

1

1

ˆ
)1))(,(,ˆ,(

ˆ
)),(,ˆ,(

21

z
xRMzsfp

z
xRMzsfp szsz


(21.1)             

  

Now solving the equations 2,1,0
1

 iH z   for );,(ˆ szz ii  , 

 i =1,2 we obtain   

                        

0
ˆˆˆˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆˆ

2

2

2

1

2

2

2

1

222

2

2

1

222

1

2

1

1

1

2

1

1

111

2

1

1

121

21

21 

















































































































z

M

z

M

z

R

z

R

z

p

z

p

z

p

z

p

zz

s

z

z

M

z

M

z

R

z

R

z

p

z

p

z

p

z

p

zz

s

z

BA

zz

zz (22)      

 

where  

B= 








22

11

0

0

zz

zz

H

H
and       

A= 








211210292827262524232221

111110191817161514131211

AAAAAAAAAAA

AAAAAAAAAAA
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The elements of the A matrix are as follows: 

xhAAxfpAA

xhxfpAAxAAxfAxhAxfpA

zRz

MzMzzzsz

11

111110

11

11918

1111

117161514

1

13

1

12

1

111

1
11

1
1

1
1

11
1

1111

,0,,0

,0,,0,,,













 

)1(),1(,0

),1)((,0),1(

,0),1(,0),1(),1(

22

211

22

221029

2222

2282726

25

2

2423

2

22

2

221

2
22

2
2

2
2

22
2

2

222

xhAxfpAA

xhfpAAxA

AxfAAxhAxfpA

zRz

MzMz

zzsz















 

Solving equation (22) by Cramer’s rule we get the following: 



.0
ˆ

,0
ˆ

,0
ˆ

,0
ˆ

,0
ˆ

,0
ˆ

,0
ˆ

,0
ˆ

,0
ˆ

,0
ˆ

,0
ˆ

,0
ˆ

,0
ˆ

,0
ˆ

,0
ˆ

,0
ˆ

,0
ˆ

,0
ˆ

,0
ˆ

,0
ˆ

0
ˆ

,0
ˆ

21

2

2

2

1

1

2

1

1

2

2

2

1

1

2

1

1212

1

1

2

2

1

1

2

1

12121

221

1



















































































































zz

R

z

R

z

R

z

R

z

M

z

M

z

M

z

M

z

p

z

p

z

p

z

p

z

p

z

p

z

p

z

p

zzz

s

z

s

z

zzz

z

(23) 

 

Note that here the restrictions used are  

.0,,0  i

z

i

z

i

sz i
i

i
ii

hff


 

 

Using (23) we find    

0,0,0,0 



























s

s

s

s
. 

 

Now the slope of the two isoclines 0s and 0  can be 

obtained by implicit function theorem: 
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









































 s

ss
s

s

s
s

0,0                      (24) 

 

Using (24) we can say that the slope of the isocline 0s  is 

positive where as slope of the isocline 0  is positive if 


2

1i

i

i

ssi fp  is 

small in absolute value where xx  1, 21   and negative if 




2

1i

i

i

ssi fp  is large in absolute value. 

Thus we have the following two cases: 

Case 1:  When both 0s  and 0  are positively sloped. It requires 

0i

szi
f  and 



2

1i

i

i

ssi fp  to be small in absolute value. If we draw the 

phase diagram in the state-costate phase plane we find an unstable 

equilibrium which is not a saddle point. 

Case 2:  When  0s  is positively sloped and 0 is negatively 

sloped. It requires 0i

szi
f  and 



2

1i

i

i

ssi fp  to be large in absolute 

value. If we draw the phase diagram in the state-costate phase plane we 

find perfect saddle point equilibrium. 
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Figure 2: Phase Diagram: Saddle Point Equilibrium 

 

Here two streamlines are converging towards the equilibrium 

whereas the other two are diverging away from the equilibrium, thereby 

giving the perfect saddle point equilibrium. 

 

POLICY ANALYSES 

Now we analyze the impact of variations in the parameters on the steady 

state values given, 0iz , i=1,2 and )1,0(x . It allows us to formulate 

policies which will promote the cultivation of a combination of both GM 

and Non-GM varieties of the same crop to help soil conservation. 

The system of equation to be considered is: 

0

0

0







s

x

H

Hs

H







                                (25) 

 

The Jacobian matrix of this system of equations is given by 

0s  

0  

s 

  
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



















sssx

sx

xsxxx

HH

HHH

HHH

J







 

                         

   
)1(

,0,0,,,,0

2

2

1

1

212

21

21

xfpxfpH

HHhhHfpfpHhhHH

ssssss

sxs

i

sxsxxx



 

 

Now we assume that 
12 hh  and following Goetz it can be shown that 

0xsH  provided 0i

szi
f which is already assumed by us. Thus we get 

  0 ssxxsx HHHHJ                                           (26) 

 

Moreover we substitute );,(ˆ szz ii  , i=1,2. Thus we are able 

to determine the impact of a change in the parameters on the state and 

costate variables of the steady state equilibrium and also the steady state 

equilibrium value of the control variable x. Since ,0J when evaluated 

at the steady state, (9),(12) and (13) can be solved uniquely for 

   11 , x  and  1s , where ),(1   .Hence the implicit function 

theorem yields 
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where   
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Proposition 3: Improvement in the capacity of root characteristic of the 

crop to anchor the soil ( ) leads to an increment in the equilibrium soil 

stock and a fall in the equilibrium value of the percentage of land 

devoted to GM crop, assuming that this feature of root characteristic of 

GM variety has a much greater role in preventing soil erosion compared 

to its Non-GM counterpart. 
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Now we assume that 
2211

21 
 hh   ie the impact of that 

feature of the root which helps to anchor the soil has a greater influence 

on preventing soil erosion in case of the GM variety rather that the Non-

GM one. Again, 


  


 1111 ˆ
1

1

z
xhxh z  such that fall in soil erosion due 

to the specific root characteristic of GM crop is more than the increase in 

soil erosion due to enhanced input usage. This is just opposite in case of 
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the Non-GM variety so that we can use the 

restriction

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. Moreover it can well be 

assumed that the resultant erosion of soil in Non-GM cultivated land is 

greater than that of GM cultivated land in absolute sense such that 
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the above conditions we can conclude that with improvement in the soil-

anchoring characteristic of the root there will be accretion of equilibrium 

soil stock. By the same logic stated in the last proposition we can justify 

the fall in equilibrium value of the percentage of land devoted to GM 

cultivation. 

 

Proposition 4: Increase in organic matter in the topsoil of the land 

under GM cultivation leads to an increase in steady state value of the soil 

stock but a fall in the equilibrium value of the percentage of land devoted 

to GM crop, both under the same restriction.   
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Here we assume that with the presence of organic matter in the 

topsoil of GM cultivated land fall in soil erosion dominates the 
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aggravation of erosion due to input use with intensification of cultivation, 

in absolute value, such that the following restriction can be utilized: 

1

1111 ˆ
11

1 M
z

xhxh zM 





.This leads us to a positive relation between 

equilibrium soil stock and the organic matter in the top soil in GM 

cultivated land. Thus conservation tillage plays an important role in 

accumulating the organic matter in the top soil such that even if input 

use increases with production process, the soil gets less eroded leading 

to an increment in soil stock in overall analysis. However, with increase in 

organic matter in topsoil, there is a fall in the steady state value of 

percentage of land devoted to GM cultivation. This can be justified in the 

following way. With cultivation of GM crop as the soil gets less eroded 

and there is limit beyond which accumulation of soil does not make any 

change in the magnitude of soil loss, the targeted level of soil depth at 

the steady state can be achieved by cultivating a lesser amount of GM 

variety. 

 

Proposition 5: Increase in the R&D investment in GM cultivation will 

lead to an increment in the Steady State value of the percentage of the 

land devoted to GM cultivation whereas the effect on equilibrium soil 

stock is ambiguous.   
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Given the sign restrictions used earlier, equation (33) suggests 

that R&D investment in GM cultivation and Steady state value of the 

percentage of land devoted to GM variety are positively related. Thus 

with the Government policy of enhancement of R&D investment in GM 

sector  there will be new varieties of GM crop available which have the 

property of longer root that helps to tighten the soil. With the 

dissemination of this knowledge and availability of those seeds developed 

in the laboratories farmers will be influenced to cultivate more of the GM 

variety. However we can not predict unambiguously about the effect on 

the equilibrium soil stock. 

 

Proposition 6: Imposition of subsidy on the inputs used in GM variety of 

the crop leads to increase in steady state value of the percentage of land 

devoted to GM variety, though the effect on the steady state soil stock is 

ambiguous. 

 

Solving equation (27) by Cramer’s rule we get   
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Given all the sign restrictions earlier it can be concluded that 

there is a negative relation between the price of the inputs to be used in 

GM cultivation and the equilibrium value of the percentage of the land 

devoted to GM variety. It implies that if the Government imposes a 

subsidy on the input price of GM, there will be a fall in the price of those 

inputs and the farmers will be attracted to devote more land to GM crop.  

As far as the equilibrium value of the soil stock is concerned we can not 

conclude anything unambiguously. 
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CONCLUSION 

This paper addresses the important issue of the erosion of a renewable 

resource like soil. In a dynamic optimization framework, it is possible to 

show that, at the long run equilibrium steady state farmers cultivate an 

optimal combination of a Non- GM and a GM crop, though the steady 

state is approached most rapidly by producing a single crop. The present 

paper highlights the role of GM crops having longer, branched and 

voluminous roots that will provide anchorage, thereby binding soil 

particles and organic matter to control soil erosion. Our model postulates 

that the improvement in the capacity to anchor the soil particles by 

plants will raise the long run steady state soil stock under certain 

conditions. In fact there are evidences of coexistence of GM and non GM 

crops side by side in different parts of the world. Thus utilization of 

positive role of GM crops will provide a sense of new insight into the 

problem of soil erosion. Moreover, the role of R&D investment in 

agriculture in this model was incorporated which was absent in earlier 

literatures on soil erosion. A significant observation can be made here 

that the two parameters i.e. the percentage of organic matter in the top 

soil and a specific root characteristic, involved in the erosion function 

have played positive role in the prevention of soil erosion and that with 

the assumption of GM crops are being able to take greater advantage in 

conservation tillage by their roots. The R&D investment and the policy 

towards subsidizing inputs are leading to an increment in area under GM 

cultivation though their effect on long run soil stock is uncertain. 

However, our expectation is that the R&D investment can be made a 

function of the root character such that the investment is made in 

developing that particular feature and introduce that in the erosion 

function, then a more defining role of the R&D investment can be 

obtained in incrementing the soil depth. We propose this as a future 

extension of the present model. Another important aspect needs to be 

addressed i.e. the issue of uncertainly involved in GM crop production. 

Uncertainty is a major issue in agriculture and is expected is play even a 
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bigger role in the situation where a new technology (GM cultivation) is 

introduced. As this is a baseline model, this kind of complications can well 

be incorporated in future to make it more realistic. 

 

APPENDIX 

 

Proof of proposition 1 

We start by assuming that a singular path exists where x lies in the 

interior of [0, 1]. Now,  0   
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Taking time derivative we get 
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From equation (12) and (13), the first two parentheses of the 

numerator sum to zero. Now, we equate (A2) and (15) along with 

utilizing (A1) for   and (14) for s  . 
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After some calculations x gets cancelled out and we get the 

following result: 
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Some more algebraic manipulations and calculations lead to: 
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To find the condition where equation (A4) is satisfied 

consider 0 . Comparing equation (13) and (A3) we get, 




























12

1

12

2

)1(,
hh

hG
x

hh

Gh
x          (A5) 

 

Thus equation (A4) provides equation (17) of proposition 1.Now, 

equation (A2) implies when 0s , 0 . Hence the singular path 

coincides with steady state. 

 

Now, let us assume there exist such singular path which is not 

identical to steady state and therefore it must hold that 
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since 2,1,0 
txzH from (12) and (13). 

 

For any singular path off the steady state, .0 s Thus for 

the existence of singular path off the steady state the sufficient condition 

is 0 xxs HH . 
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Therefore, a singular path is identical to a steady state provided 

that for any time interval of positive length the following condition 

obtained from (A6) does not hold: 
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