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Abstract
Conditions for stability in an open economy dynamic stochastic general equilibrium model adapted to a

dualistic labor market (SOEME) are the same as for a mature economy. But the introduction of

monetary policy transmission lags makes it deviate from the Taylor Principle. Under rational

expectation a policy rule is unstable, but under adaptive expectations traditional stabilization gives a

determinate path, with weights on the objective of less than unity. Estimation of a Taylor rule for India

and optimization in the SOEME model itself, all confirm the low weights. The results imply that under

rational expectations optimization is better than following a rule. If backward looking-behavior

dominates, however, a policy rule can prevent overshooting and instability. Economy-specific rigidities

must inform policy design, and the appropriate design will change as the economy develops.
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Stability and Transitions in Emerging Market Policy Rules
 
 

 

 

I. Introduction 

We examine stability and determinacy in a dynamic stochastic general 

equilibrium (DSGE) model for a small open economy (SOE), adapted to an 

emerging market (SOEME) with two types of consumer-workers. One group 

has high and the other low productivity
1
. Stability results have the same 

structure as in the SOE. 

 

In the calibrated SOEME model, however, some transmission lags and some 

degree of backward-looking behavior are necessary to reproduce data 

moments for an emerging market (EM).With these changes, policy 

optimization solving for macro variables as a function of expected future value 

delivers stability and determinacy at lower output cost. Coefficients of the 

policy reaction function are low. But a monetary rule requires unrealistic 

weights for stability. Therefore discretionary optimization is more effective 

than following a monetary policy rule if agents are forward-looking. 

 

A rule-based traditional stabilization where agents solve current variables as a 

function of past data turns out to require low weights on both inflation and the 

output gap for stability. The weights fall with a rise in the share of forward-

looking behavior. A rule can be followed, if backward-looking behavior 

dominates, but its coefficients should not exceed unity. Then it contributes to 

stability by preventing over-or under-shooting of policy rates.  

 

In an EM with delayed transmission of policy rates, stability turns out to be 

very sensitive to the share of forward-looking behavior. This suggests 

volatility can be high if policy rules are followed unless weights are kept low.  

                                                 
1
 See Goyal (2011), who extends Galí and Monacelli (2005) to such an emerging market. 
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Such a policy rule contributes to stability since it prevents over or under-

shooting due to lagged effect of policy. 

 

These results imply the coefficients of a policy rule in an EM should change as 

monetary transmission matures and behavior becomes more forward-looking. 

During transition, discretionary optimization may offer more flexibility, and 

the Taylor Principle that the weight on inflation in a policy rule must exceed 

unity does not hold. The results may apply more generally than to EMs alone 

since other economies also have various types of frictions. 

 

The practice of monetary policy in India is consistent with these results. The 

CB’s reaction function in the calibrated SOEME, and a monetary policy rule 

estimated with Indian data both show response coefficients much smaller than 

unity. Thus, during the estimation period, policy avoided the instability that 

the Taylor Principle could entail in Indian conditions.  

 

The structure of the paper is as follows: Section II places the SOEME stability 

issues in the relevant literature; Section III presents the basic SOEME model; 

Section IV derives the implications of stability for a policy rule; Section V 

develops the adaptive expectations case; Section VI presents an estimated 

monetary policy rule, before Section VII concludes.  

 

II. Literature Review 

Models with forward-looking behavior can have nominal explosions. Sargent 

and Wallace (1975) demonstrated that with rational expectations inflation is 

indeterminate under an interest rate instrument. Since there is no effective 

nominal anchor inflation can take many values. But McCallum (1981) later 

showed such indeterminacy only occurs if the Central Bank (CB) places no 

weight on inflation in its response. The CB response to inflation, or its 

targeting of nominal money stock, can provide the nominal anchor required to 
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fix the price level or inflation. In addition, other rigidities and lags may serve 

to anchor inflation (Friedman, 1990). 

 

It is shown analytically, in the canonical NKE forward-looking model 

(Woodford, 2003) that a CB response to inflation above target exceeding unity 

selects the unique saddle-stable inflation path thus ensuring determinacy. 

Since there is a unique stable path, rational expectations converge to this. 

It ensures stability since it rules out explosive nominal paths of self-fulfilling 

inflation expectations. If for each one-percent increase in inflation, the central 

bank raises the nominal interest rate by more than one percentage point 

(Taylor 1993, pp. 202) the policy rate adjusts more than one-to-one with 

inflation. This is known as the Taylor Principle and eventually implies positive 

real interest rates. 

 

Evans and Honkapohja (2003) make the point that such a policy rule works 

because it conditions the policy response not only on inflation but also on 

individuals’ expectations. It contributes to stability since outcomes depend on 

these expectations.  

 

This literature justifies a Taylor type monetary policy rule, with a weight on 

inflation greater than unity, showing it can perform as well as discretionary 

optimization. A rule can also be justified as a credible commitment, 

preventing opportunistic behavior that results in an inflation bias. In emerging 

democracies where inflation hurts the poor and loses votes, however, CBs may 

not have an inflation bias (Goyal, 2007)
 2

.   

 

But, further work, surveyed in Galí et. al (2004) shows monetary policy rules 

are fragile and sensitive to the assumptions of the model. Such rules can be a 

                                                 
2
 Clarida et. al. (1999) point out, however, in a discretionary optimum also, even though the 

CB reoptimizes every period, it may not have an incentive to deviate and create surprise 

inflation, and the private sector recognizes this. 
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source of instability. A large literature on monetary policy rules under 

adaptive learning followed seminal work by Evans and Honkapohja (2003). It 

generally shows rules that generate determinate equilibrium also lead to 

expectational stability (E-stability) under learning (Bullard and Mitra, 2002), 

so that expectations are not perfectly rational. But again regions of 

determinacy are sensitive to model assumptions and parameters.   

 

How does our model fit in and contribute to the literature? Like the learning 

literature, we explore non-rational expectations, but we also consider the case 

where the share of backward-looking behavior is large enough to analyze a 

traditional stabilization, rather than rational expectations equilibrium. The 

learning literature stays with the latter. Thus we also consider a pure 

backward-looking equilibrium. 

 

Our results support the general finding of fragility and context-specificity of 

policy rules and of the Taylor principle. But show this in a context of a 

dualistic EM not yet addressed in the literature. In Galí et. al (2004) a share of 

rule-of-thumb consumers implies demand rises with output, requiring a higher 

weight on inflation for stability. Our model differs in that subsistence 

consumption is given exogenously and so demand does not rise with output. 

Our aggregate demand equation therefore differs from theirs.  

 

The literature has also explored the role of inertia and lags. Mitra and Bullard 

(2007) add interest rate stabilization or a lagged interest rate term in the policy 

rule and show this raises the region of determinacy and learning. Duffy and 

Xiao (2007) have a similar result. We have such an interest stabilization term, 

but the rational expectations equilibrium is still indeterminate in our model if 

the Taylor Principle is followed. 
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Evans and McGough (2005) have lagged inflation and output terms in the AS 

and AD curves respectively and find these do not affect the indeterminacy 

result, which continues to prevail. New regions of explosiveness are added. 

We have a lagged inflation term, but add a lagged interest rate term in the AD 

to capture market segmentation that delays policy transmission. The literature 

does not, to our knowledge, as yet explore the effect of such a term. We find 

this combination of lags does erode the existence of unique rational 

expectations equilibria. 

 

Another new result is a high share of backward-looking behavior can justify a 

policy rule with low weights. But the presence of some forward-looking 

behavior makes the equilibrium determinate for some parameter combinations 

leading to a unique equilibrium.  

 

Our result therefore offers a response to Cochrane’s (2011) criticism of the 

NKE determinacy result that it requires unrealistic CB behavior on out of 

equilibrium paths. On such explosive paths, higher inflation requires CBs to 

raise expected inflation even more in order to switch expectations to the 

unique path as against the old Keynesian stabilizing logic of raising interest 

rates to reduce demand and therefore inflation. On an explosive path, for 

example, real rates can fall with inflation, and create more inflation as money 

supply rises under an interest rate rule. Such expected policy reactions cannot 

apply in a stabilizing solution based on past behavior. But there is a unique 

stable path, so the ad hoc charge that applies to old Keynesian stabilization is 

not valid. Instability occurs, however, with large policy responses due to 

overshooting of policy rates in the presence of lags. This is known as 

instrument instability. 

 

The above argument also gives a justification for the empirical estimation of a 

policy rule. Cochrane (2011) argues a monetary policy rule is not identified 
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under rational expectations. Since variables jump to a unique path, the 

adjustment process cannot be estimated. What are estimated are correlations in 

shocks that shift inflation to a unique equilibrium. The criticism does not hold 

for past adjustment paths with smoothing.  

 

Since the objective is to explore stability in the specific context of a dualistic 

EM with transmission lags and draw implications for policy, we do not 

analyze different types of policy rules, and other issues, which are already 

examined in the literature (Bullard and Mitra 2002).   

 

After a brief description of the SOEME model, we turn to stability results. 

 

III. A Small Open Emerging Market Model 

A microfounded dynamic stochastic general equilibrium (DSGE) model for a 

small open emerging market is used to derive the aggregate demand (AD) (2) 

and aggregate supply (AS) (3)
3
. The central bank (CB) minimizes a loss 

function (1), based on consumers’ welfare and a desire for smoothing, subject 

to (2) and (3). The loss function is a weighted average of output, inflation and 

interest rate deviations from equilibrium values:  

222

tittx iqqxqL                  (1) 

The last captures smoothing preferences that prevent large changes in the 

policy rate, where it is the riskless nominal interest rate. The first term is the 

output gap ttt yyx  , and the second term, inflation, can be either consumer 

price inflation 1 ttt pp  (where price pt  log Pt) or domestic inflation πH,t. 

Lower case letters are logs of the respective variables. Table 1 explains the 

parameters and gives their calibrated values.  

 

                                                 
3
 The derivations are available in Goyal (2011). 
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The AD and AS are derived from forward-looking consumer and firm 

optimization respectively, in a dualistic structure with two types R and P of 

consumer-workers. The R types, with population share η, 0< η <1, are able to 

smooth consumption at international levels in perfect capital markets.  P types 

are assumed to be at a subsistence consumption cP, financed by transfers from 

R types mediated by the government. This is assumed to change exogenously. 

 

Table 1: Benchmark calibrations 

Baseline Calibrations   

Degree of price stickiness  0.75   

Price response to output  0.25  

Labour supply elasticity of P type P 0.01 

Labour supply elasticity of R type R 0.6 

Elasticity of substitution between differentiated goods ε 6 

Steady state real interest rate or natural interest rate  or i  0.01 

Variations in the natural interest rate due to temporary shocks rr  0.01 + 

Degree of openness  0.3  

Proportion of the R type  0.4 

The intertemporal elasticity of substitution of the R type R1  1  

The intertemporal elasticity of substitution of the P type P1  0 

Consumption of the P type Cp 0.2 

Consumption of the R type CR 1 

Share of backward looking price setting b 0.2 

Share of forward looking price setting f 0.8 

Weight of output in the CB’s loss function qy   0.7 

Weight of inflation in the CB’s loss function q 2 

Weight of the interest rate in the CB’s loss function qi 1 

Implied parameters   

Weighted average elasticity of substitution 1/D  0.58 

Discount factor  0.99 

Weighted average consumption level C 0.75 

Log deviation from world output  0.1 

Philips curve parameter  0.24 

Steady state real interest rate, discount rate  0.01 

Labour supply elasticity 1/ 4 

Shocks    

Persistence of natural rate shock r 0.75 

Persistence of cost-push shock c 0 

Standard deviation of natural rate shock r
  0.01 

Standard deviation of cost-push shock c
  0.2 
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The labour supply elasticities of the P types are higher than the R types and for 

the P type intertemporal elasticity of consumption is zero. 

 

The dynamic AD equation for the SOEME is: 

   )rr}{Ei(
1

}x{Ex t1t,Htt

D

1ttt 


     (2) 

Where: 

}y{E)(}c{E)1(a)1(rr *

1ttD1t,PtDtaDt    

    )(  , 
 


D

d
1

, 





D

)1(
, d)( D , 

   
))1((

R
D




 , )))(1((d D , 

)1)(1( RR    

 

The steady-state natural interest rate, ρ, is defined as the equilibrium real rate, 

consistent with a zero or target rate of inflation, when prices are fully flexible. 

It is also the time discount rate since  log11  
 where β is the 

discount factor. Shocks that change the natural rate open an output gap and 

affect inflation. The term trr  that enters the AD therefore captures deviation 

of the natural rate from its steady-state value. The deviation occurs due to real 

disturbances that change natural output; trr  rises for any temporary demand 

shock and falls for any temporary supply shock. Optimal policy requires 

insulating the output gap from these shocks, so that the CB’s interest rate 

instrument should move in step with the natural rate. Thus the CB would 

accommodate positive supply shocks that raise the natural output by lowering 

interest rates. It would offset positive demand shocks that raise output above 

its potential by raising interest rates. Full stabilization at the current natural 

output implies that 0,  tHtx  , 
tt yy   and tt rrr  . 
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In an EM a change in cP is an additional shock. A fall requires reduction in the 

policy rate, since it increases willingness to work of P type workers. The 

distance from the world consumption level also rises. The parameters of the 

other shock terms also differ from those for the SOE. Since productivity 

shocks, at, can be more persistent in EMs that are in transition stages of 

upgrading technologies, they change the natural rate less. A temporary shock 

to cP turns out to have the largest effect on the natural rate (Goyal 2009). 

 

The dynamic AS is: 

  111   bft,HbtDt,Htft,H xE   (3) 

 

The response of inflation to the output gap is    DD . Since both 

empirical estimations and the dominance of administered pricing in an EM 

suggest that past inflation affects current inflation, the AS (3) has a positive b 

as the share of lagged, and f  as the share of forward-looking inflation.  

 

Marginal cost at its steady-state level, when prices are perfectly flexible, 

defines the natural output
ty . But the world output level is the final steady-

state for a SOEME. Low productivity, poor infrastructure and other distortions 

keep the natural output in an EM below world levels. Convergence to world 

output levels for all the SOEME population is part of the process of 

development. Goyal (2011) systematically compares the differences in 

behavior and outcomes for the SOE and SOEME.  As η approaches unity the 

EM becomes developed and the SOEME converges to the Galí and Monacelli 

(2005) (GM) type SOE with per capita consumption reaching the normalized 

world level of unity. 

 

In the next section we analyze the stability properties of the SOEME. In NKE-

SOE models a Taylor-type policy rule imposes stability in the rational 
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expectations solution.  An equivalent rule can be derived for a basic SOEME 

model. Since the two models have a similar structure, they differ only in 

parameter values. The policy response coefficient to inflation turns out to 

exceed unity in both models.  

  

IV. What Stability Implies for a Policy Rule 

As in the SOE system, the SOEME system comprising (2) and (3) is unstable 

under forward-looking optimization solving for endogenous variables as a 

function of expected future values. To see this, substitute dynamic AD (2) in 

the AS
4
 (3) to write the AS as a function of xt+1. The two equations then 

become: 

   1,

1

1 



  tHtDttt ExEx      (4) 

 

     1

1

1 



  t,HtDDttDt,H ExE    (5) 

 

In matrix form they are:   

and 

















1

11

DD

D
oA    (6) 

 

Since the determinant and trace of the coefficient matrix Ao are both greater 

than zero, the system is unstable. There is local indeterminacy. Sunspot 

explosions can occur. 

 

Woodford’s (2001) result was that interest rate rules lead to indeterminacy of 

the rational expectations consistent price level only if the path of the short-

term policy rate is exogenous. In particular, determinacy requires the Taylor 

Principle to be satisfied, since it implies the policy rate reacts to inflation. 

 

                                                 
4
  We consider the simplest version of the SOEME so f is taken as equal to 1. 

 
 


















 



1

1

tt

tt

o

t

t

E

xE
A

x
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We derive the equivalent stability condition for the simplified SOEME. A 

Taylor-type policy rule whereby the interest rate is raised if there is domestic 

inflation or if the output gap is positive is: 

txt,Htt xrri       (7) 

 

Substituting for it minus its equilibrium value from the policy rule (7) into (2), 

transforming Ht   into t, substituting for t, then substituting for xt, with it 

substituted in it, in (3), we get: 

     11 1   ttttDtDxD E)(xEx   (8) 

 

 

       11   ttxDDttDDtDxD E)(xE   (9) 

 

The AD and AS (2) and (3) are transformed to (8) and (9), as required for a 

rational expectation solution, and written in matrix form:  

 

 




















1

1

tt

tt

T

t

t

E

xE
A

x


                                                        (10) 

where  

 












xDDDD

D

TA


 1
and




DxD

1
 

 

The stability condition
5
 for a unique non-explosive solution, to which the 

forward-looking variables jump, is     011   xD . A policy response 

to inflation that exceeds unity is sufficient to ensure stability. The result is 

qualitatively similar as for the SOE in GM, although the coefficient values are 

different. GM’s  becomes D in the SOEME; rr t is also different, subject to 

                                                 
5
 The stability condition for a two equation difference system is determinant A > 0, and 

determinant A+ trace A>-1 when the system is written in the form ...........)( 1  tt zEz  (see 

Woodford, 2003).  
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larger shocks
6
. The price equation (3) has the implication that in the steady-

state a rise in inflation raises the output gap by 
 

D

1
. Then 

 
x

D










1
 

gives the long-run response of the policy rate to a persistent rise in inflation. 

The Taylor principle, which the stability condition satisfies, says this response 

must exceed unity. In the SOEME, since  D
 and is large

7
 the permanent 

rise in policy rate is driven more by . 

 

Calibrating the SOEME model required a lagged term in the policy variable to 

capture slow monetary policy transmission through segmented financial 

markets
8
. In addition, only a proportion f < 1 of firms set prices in a forward-

looking manner. The model equation (11) and (12), with these additions, 

turned out to be stable under discretionary optimization and sensitivity 

analysis conducted with the parameters as given in Table 1, even where 

weights on inflation were low in the loss function and in the derived policy 

reaction function.  

 

The latter gives the final weight on the CB objectives in the calibrations after 

the constraints, subject to which the optimization is done, are substituted in the 

policy objective function. A CB reaction function may include more variables 

than a Taylor rule, but the two are related since a monetary policy rule 

normally gives the CBs response to current or forecasted macro variables. 

Given the CB’s objective function used, the arguments of the derived reaction 

function are the same as our estimated monetary policy rule, and differ from 

the standard Taylor rule in including a lagged interest rate term. 

                                                 
6
There can be many reasons for higher shocks to the real interest rate in EMs. Another factor 

affecting EM interest rates is country risk. Neumeyer and Perri (2005) reproduce EM business 

cycle stylized facts by introducing large shocks to the real interest rate due to changes in such 

risk. 
7
 In the calibrated SOEME for the values given in Table 1 47.0D so   02.01  D  

8
 This differs from different types of lags due to inertia and stabilization objectives analysed in 

the literature. See, for example Evans and McGough (2004). 
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 ttHttt

D

tt rrErrxx   1,11 8.02.0
1




           (11)

 

  1,,1,

1
  tH

f

b
tD

f

tH

f

tH x 











     (12) 

Since a positive smoothing parameter qi in the CB loss function reduces the 

policy response to inflation, some weight on  is required for stability. With qi 

= 0 even no weight on inflation generates stable outcomes. For example, if qi 

= 1 outcomes are indeterminate with qx = 0 and q less than 1; they are also 

indeterminate with qx =0.07 if q less than 0.9; but if qi =0 and qx =0.07 

outcomes are determinate even with q=0. In the estimated reaction functions 

with varying parameter values in Goyal (2011, Table 4) the weights on 

inflation range from 4.28 to 0.0091. The lags in the system, and other 

structural aspects, may be contributing to stability even with a low policy 

reaction to inflation. 

 

Since the SOEME model under optimal discretionary policy was stable even 

with a weight on inflation less than unity, we next derive stability conditions 

for the more complex calibrated SOEME model under a Taylor-type policy 

rule. 

 

IV.1. Stability Conditions for the Calibrated SOEME with a Policy Rule 

To solve for stability under a policy rule with the calibrated SOEME model 

the equations (11) and (12) are written in the form (15) and (16), where 

expectations of future variables affect current variables, and the policy rule 

(13) with a generic auto-correlated shock term vt (14) substituted in them. 

 

ttxt,Ht vxr                  (13) 

 

ttvt vv   1                (14) 
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   

  ttttv

txtHbtHtfttDt

rrvv

xExEx



 









11

11,1,1

2.08.0

2.08.02.08.01
(15) 

 

     
       

  tttv

DtDxtHbbD

tHtfDfttDDtH

rrvv

x

ExE













11

11,

1,1,

2.08.0

2.08.02.0

8.01











(16) 

 

Where    
   


DxD 8.08.0

1
 

 

They give the following higher order difference equation system: 

 11

1,

1

1,

1

,

8.02.0~




































ttt

tH

t

tHt

tt

tH

t
vvrrC

x
B

E

xE
A

x



       (17) 

 

Where 

 

 
    

























fDfDD

fD
A

8.01

8.01
 

 

 

 

     













bbDDx

bx
B









8.02.02.0

8.02.02.0
 

  

Consider a second order difference equation: 

tttt cbxaxx   12  

 

The solution is stable
9
 iff 

|a| < 1+b                

 

      b < 1                   

Rewriting (17) as: 

                                                 
9
Stability is discussed in Blanchard and Kahn (1980), Woodford (2003), Gali (2008). Hoy et 

al. (2004, pp. 831) list three conditions for the system to be locally unique. These are the two 

given in the text and a third a – b > -1 which is satisfied trivially. 
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C
x

A

Bx

AE

xE

tH

t

tH

t

tHt

tt
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

































1,

1

,1,

1 1


         (18) 

 

 

11
1


A

B
and

A

B

A
 will define the stability of the equation. 

 

The first condition can be written as: 

 

1 < A - B              (19) 

Since, 

 

bx

fD

B

A





2.0


 

 

bxfD 


2.0
1

B-A <1              (20) 

The second condition is: 

1
A

B
             (21) 

 

bx

fD





2.0
1               (22) 

 

Condition (22) defines a cap for the weight given to the output gap, x , but 

does not impose any constraint on the weight given to inflation deviation,  . 

It gives a high upper bound for x .  

 

Condition (20) also defines cap for x  and for
  since the latter enters . The 

cap for   is negative unless x  is negative, and vice versa. Thus for stability 

the policy rule imposes a negative weight either on inflation deviation from 

target or on the output gap. Since the caps derived from condition (20), are 

lower, it is the operative condition. 
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The stability condition (22) holds but condition (20) is not satisfied for the 

parameters in Table 1, so while optimization with moderate weights is stable, 

the Taylor rule is unstable
10

. Combinations of  and x  for which both the 

conditions are satisfied with the benchmark calibrations, with (20) holding just 

at the margin, are  = 2 and x  = -1.5, or  = -4.2 and x = 1.6. A CB’s 

policy rule is unlikely to have such weights. 

 

IV.2. Response to Shocks 

Analytically deriving
11

 the response to monetary shocks vt from the policy rule 

(13), using the method of undetermined coefficients, gives: 

     1 tt,H v  where 
 

   




















D

Db

D

xf

v

12.0

8.02.0
            (23) 

 
 

tftbt

D

t vvvx 





  21

1
            (24) 

 

We can now compare the inflation and output responses under the policy rule 

with the discretionary optimization undertaken in Goyal (2011), using the 

benchmark parameters of Table 1, and the stable weight combination of  = -

4.2 and x = 1.6. Under the monetary rule, the fall in inflation (0.0065) is less 

and output (0.0011) is more compared to optimization. Under optimization a 

natural rate shock raises the policy rate by 0.013 and reduces inflation by 0.01 

and output by 0.006 in the first period. For a persistent rise in vt (monetary 

tightening) of 0.1 optimization is more effective, but in the same direction as a 

policy rule. Optimization is not only stable but has a lower output cost.  

 

                                                 
10

 In the benchmark optimizing calibrations the upper bound for x  is 34.1 from condition 

(22) so this condition is satisfied. However, the lower cap from condition (20), which is not 

satisfied is -1.5. The cap on  , -2.3, is also not satisfied. 
11

 Derivations are available on request. 
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Key results, supported by analysis and calibrations are: policy lags in the 

SOEME make it stable under forward-looking optimization for a coefficient of 

inflation in the loss function that differs from unity. But a forward looking 

policy rule with realistic weights to the function variables in the objective is 

not stable under rational expectations.  

 

V. Adaptive Expectations and a Policy Rule 

Rigidities and volatility in an EM make it difficult to forecast future variables. 

Policy-makers and agents typically have adaptive rather than model consistent 

rational expectations. So next we explore the functioning of a policy rule 

under such behavior, where current variables are solved based on past 

variables. Future inflation enters both the AD and AS, but since expectations 

are formed adaptively there is no overall rational expectations solution. Future 

variables have to be solved as a function of past variables to analyze stability 

unlike the form of equations (4) and (5). We examine stability in such a case, 

with our calibrated SOEME AD and AS, adding a policy rule.  

 

The Lucas critique was agents’ anticipation of policy will prevent a unique 

outcome of traditional Keynesian stabilization, where policy makers raise rates 

to reduce current demand and output. With our structure of monetary 

transmission however, a policy rule delivers a unique equilibrium. In the 

calibrated SOEME model, with interest rate lags and some forward-looking 

behavior, the model solved backwards as a function of past data is unstable. 

Adding a policy rule delivers a unique stable solution, to which the economy 

converges.  But, just as in the forward-looking optimizing SOEME solution, 

the weights on inflation and output gap deviations have to be less than unity 

for stability.   

 

The backward-looking system (11) and (12), with the policy rule (13) and (14) 

substituted in it, is stable if the following conditions are satisfied: 
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BA

BA





1

1

            
   (25) 

 

Where:  

 



































f

DxD

f

A
2

8.08.0
1

            (26) 

D

x

f

bB







2.0              (27) 

 

These can be solved to obtain floors and caps on the policy rule weights. 

The first condition written as, 1 > - A – B, can be used to derive the floors: 

 
 

bD

D
fDD

f

D
x









 

2.08.0
8.0

2















     (28) 

 
  8.0

1
2.08.0

2






































D

fDx

D

b

f

D    (29) 

That is, the weights in any policy rule followed must exceed the above values. 

 

The second condition, 1 > A – B, can be used to derive the caps: 

 

 

 
 

bD

D
DD

f

D
fx





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














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







D

D

D

b

f

D
f

    (31) 

 

That is, the weights in any policy rule followed must be less than the above 

values. 
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The cap conditions are the binding ones. The derivation of the cap conditions 

with respect to f  gives: 

 

 

bD

D

f

D

f

x














2.08.0

2
2 










 
             (32) 

 
  8.0

12
2 


















 


Df

D

f

            (33) 

 

Since the second term in the bracket exceeds unity, these derivatives are 

negative. So the weights in the policy rule are decreasing in f , and have to be 

lower, the larger the share of forward-looking behavior. The derivatives with 

respect to b are also negative but are much smaller. So the derivatives with 

respect to f, (32) and (33) have a much larger effect on the caps, as the caps 

change with f. 

 

For the calibrated (Table 1) value of parameters, if 4.0f , the caps for x

and  respectively are 0.5 and 0.35. Estimation of f with Indian data gives 

64 percent of firms to be forward-looking (Tripathi and Goyal, 2012). For the 

economy as a whole, including administered prices and informal sectors, f

will be lower, so optimal weights in the policy rule should be lower than the 

values for  f  
= 0.4. The negative derivative of x with respect to   (34) from 

the cap condition (30), and vice versa from the cap condition (31), shows if 

one of them rises, the other must fall. If f rises to 0.8, the caps fall to 0.27 

and 0.05 respectively. But at that level of f  the rational expectations solution 

can be expected to be more relevant than the backward-looking one, since 

behavior will become more forward-looking. 
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     
bD

D
D

x










 2.08.0

8.0


             (34) 

 

In an EM with delayed transmission of policy rates, stability turns out to be 

very sensitive to the share of forward-looking behavior. This suggests 

volatility can be high if policy rules are followed unless weights are kept low.  

Such a policy rule contributes to stability since it prevents over or under-

shooting of rates due to lagged effect of policy.  

 

We compare our analytical results on the policy response coefficients 

consistent with stability in EMs with an estimated Indian monetary policy rule. 

Most EMs follow cautious policies and estimated Taylor Rules do have low 

weights as we see for India in the next section. 

 

VI. Estimated Monetary Policy Rule 

A monetary policy rule was unstable under a rational expectations solution in 

the calibrated SOEME. But in the backward-looking solution, stability 

imposed low caps on both policy rule coefficients. Our results suggest that 

with different types of lags and rigidities the feedback coefficients required for 

determinacy can be very different from the Taylor Principle. What do 

estimated rules show?  

 

There is a large empirical literature estimating the Taylor rule. The original 

equation was: 

      ttx
*
tt

*
ttt yyri                (43) 

 

Where, *

t  is the desired rate of inflation, *

tr is the assumed equilibrium real 

interest rate, yt, is the logarithm of real GDP, and ty  is the logarithm of 

potential output, as determined by a linear trend. Taylor proposed setting   = 
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x  = 0.5. As long as   > 0, an increase in inflation of one percentage point 

would lead the CB to raise the nominal interest rate by 1 +  , thus raising the 

real interest rate. The simple NKE models can imply a very low x , since in 

forward-looking models with demand shocks the feedback to inflation is 

sufficient to stabilize output
12

.  

 

As the empirical Taylor rule literature developed, the estimated equation was 

simplified. Either the short policy rate was regressed on the deviation of 

output from potential and of inflation from target, or a constant term was 

assumed to include a constant inflation target and real interest rate. So the 

short policy rate was regressed on inflation, on the deviation of output from 

potential, and a constant capturing the inflation target. A lagged interest rate 

was included to capture policy smoothing.  

 

We estimated the latter Taylor rule specification for India to compare its 

coefficients with our theoretical results, and assess Indian monetary policy. 

We use data at quarterly frequency from 2000Q2 to 2011Q2. Variables 

include call or money market rate, GDP, core and headline wholesale price 

index. All the growth rate and inflation terms are in percentages, following the 

practice in the literature (Maslowska, 2009). Year-on-year headline inflation is 

measured as annual percentage change in Wholesale Price Index (WPI). Core 

inflation is defined as nonfood manufacturing goods inflation, whose share 

was around 52.2 percent in WPI. All the variables are tested for seasonality. 

Since analysis of linear plots show that quarterly GDP and WPI series have 

                                                 
12

 The NKE literature calls it the 'divine coincidence' when the CB does not need to take 

fluctuations in the output gap into account when setting interest rates. While his work 

supported the Taylor Principle, Woodford’s (2001) differences with the empirical Taylor rule 

were: First, the welfare theoretic loss function implies the inflation target should be zero in the 

pure frictionless model. Second, the output gap should be calculated using the natural output, 

not the past deterministic trend. All the shocks, such as technology, and world income, that 

affect the natural interest rate in equation (2) affect the natural output. In the SOEME these 

shocks include consumption of the P-type. See Goyal (2009) for more details on natural 

output in a SOEME. 
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multiplicative seasonality, we de-seasonalize the series using the X-12 

ARIMA procedure. We estimate trend or target output using the HP filter, and 

calculate output gap as the percent deviation of real GDP from a target, as 

originally proposed by Taylor:     

 

y = ((Y-Y*)/Y*)*100 

 

where Y is real GDP (proxied by the industrial production index), and Y*is 

trend real GDP given by HP filter.  

 

Augmented Dickey-Fuller unit root tests show the variables are stationary. 

The Durbin Watson test indicates serial correlation and the Breusch-Pagan test 

shows heteroskedasticity in the error terms. To correct for both autocorrelation 

and heteroskedasticity, we estimate our equation using ordinary least squares 

with Newey-West variance-covariance matrix. 

 

The two estimated equations for headline inflation and core inflation (t-values 

in brackets) are as follows: 

 

(1) Headline inflation 

(3.12)         (2.83)         (5.24)    (2.71)

32.0156.058.085.1 1 tttt yrr   
 

                  

(2) Core inflation 

(2.93)         (2.06)         (5.21)    (2.96)

29.0126.059.012.2 1 tttt yrr   
 

 

These imply the long-run rise in rt due to a persistent rise in inflation is 0.16 

and 0.13 respectively. The long-run response is given by 
 

x

D










1
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The coefficients are of a similar order of magnitude to the reaction functions 

estimated in the discretionary optimization and to the cap for   in the policy 

rule with f of 0.5 to 0.6 of the backward-looking case
13

. The results suggest 

the implicit policy rule Indian policy makers followed in this period was near 

optimal. The response to both inflation and the output gap was not high, but 

the weight on the output gap exceeded that on inflation.  

  

VII. Conclusion 

The NKE literature shows a response to inflation of above unity can impose 

stability in optimizing models with rational expectations. Theoretical stability 

results turn out to be the same in an NKE DSGE model adapted to an open 

economy EM model with two types of agents to capture heterogeneity in 

labour markets and consumers. Most estimated EM Taylor rules, including 

ours in this paper, however, give a coefficient for inflation of much below 

unity. 

 

Consistent with this, in the calibrated model that has lagged policy rates in the 

aggregate demand equation, the derived stability condition does not imply the 

Taylor Principle. A policy rule is unstable in a rational expectations 

equilibrium. In a backward-looking solution, stability requires low weights on 

both objectives. As the weight on one rises that on the other should fall. The 

weight on the output gap exceeds that on inflation deviations. Discretionary 

forward-looking optimization is also stable. The reaction functions estimated 

in optimizing simulations and caps from the data driven policy rule are low 

and consistent with estimated coefficients of Taylor-type rules for India. 

Discretionary optimization outperforms a policy rule under rational 

expectations. A policy rule can be followed to the extent backward-looking 

behavior dominates, but with weights on the arguments of less than unity, it 

                                                 
13

 With the benchmark parameters, x  = 0.3 and f = 0.6 the cap is 0.11 for  .
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would implement standard macroeconomic stabilization while preventing 

overshooting of rates. 

 

Analytical solutions to monetary policy shocks using the calibrated equations, 

serve as consistency checks, and give results similar to the discretionary 

optimization. Therefore a key result, supported by analysis, calibration and 

estimations is: lags and rigidities in the SOEME make it stable for low weights 

on inflation, in Central Bank loss functions, optimizing reaction functions, as 

well as a smoothed policy rule.   

 

Outcomes are stable even with a weight of zero on inflation in the loss 

function when there is no weight on interest rate smoothing, and weights on 

inflation in estimated reaction functions can be very low. The lags in the 

system, and other structural aspects, may be contributing to stability even with 

a low policy reaction to inflation. Such low coefficients may be necessary to 

prevent instrument instability in the presence of lagged policy transmission 

when backward-looking behavior dominates. A policy rule delivers a unique 

saddle stable equilibrium in an adaptive expectation equilibrium. It follows if 

an EM follows a policy rule it should ensure coefficients are low, until 

monetary transmission matures and the share of forward-looking behavior 

rises. During the transition, discretionary optimization may give more 

flexibilities.  

 

The results suggest, more generally, that the effect of specific rigidities on 

stability should be more carefully explored, and knowledge of these rigidities 

can give useful inputs for the design of policy. 
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