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Weather Sensitivity of Rice Yield: Evidence from India 
 

Anubhab Pattanayak and K. S. Kavi Kumar 

 
Abstract 

 
This study estimates the weather sensitivity of rice yield in India, using 
disaggregated (district) level information on rice and high resolution daily 
weather data over the period 1969-2007. Compared to existing India 
specific studies on rice which consider only the effects of nighttime 
(minimum) temperature, the present study takes into account the effects 
of both nighttime and daytime (maximum) temperatures along with other 
weather variables on rice yield. The results suggest that both nighttime 
and daytime temperatures adversely affect rice during different growth 
phases. The effect of higher nighttime temperature on rice yield was 
much lower than those estimated by previous studies. Further, the 
negative impact of higher daytime temperature on rice yield was much 
larger than the impact due to higher nighttime temperature. The study 
further estimates that average rice yield would have been 8.4 percent 
higher had the pre-1960 climatic conditions prevailed during the period of 
study. This translates into an annual average loss of 4.4 million tons/yr or 
a cumulative loss of 172 million tons over the 39 year period for India. 
The paper argues that such significant loss in rice production under 
climate change conditions in future will have strong implications for the 
region’s food-security and poverty, given that a large number of 
producers and consumers depend on rice for their livelihood and 
sustenance. 
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INTRODUCTION 

 

Assessing the influence of historical weather on rice productivity is 

important in view of the large percentage of current global population 

depending on the crop for their livelihood and sustenance. About 90  

percent of the rice production takes place in the tropical/sub-tropical Asia 

where more than 60 percent of the world population lives. It is the major 

staple for more than half of the world's population (FAO, 2013), 

accounting for approximately 30 percent of the total dietary intake, 

globally and in South Asia (Lobell et al., 2008). Rice bears high 

significance for the world's poor population, majority (67 percent) of 

them living in Asia, in particular South Asia (43 percent) (World Bank, 

2013). It accounts for substantial portions in their caloric intake, total 

food consumption expenditures (> 50 percent), and total household 

expenditures (> 20 percent). Moreover, a high fraction (  38 percent) of 

the poor people in South Asia live in areas where rice is a dominant crop 

(Asia Society and IRRI, 2010). 

 

India being a major rice consumer and producer in South Asia, 

continues to grapple with stark issues of hunger, malnutrion, poverty and 

food insecurity, despite the success of green revolution resulting in 

significant improvements in the productivity of food crops, including rice 

(Kumar et al., 2013). It accounts for nearly 67 percent of the total rice 

production of South Asia (FAO, 2013) and 75 percent of the region's poor 

(World Bank, 2013).  Thus, any exogenous or endogenous shock to the 

rice production system in the Indian sub-continent has significant 

consequences for the incidence of hunger, malnutrition and food 

insecurity among the poor living in this region. In sum, the importance of 

rice in determining global and regional food insecurity and poverty 

cannot be undermined. 

 

Rice production in the tropics is sensitive to climatic factors 

(temperature, rainfall, and solar radiation) which affect the crop in 
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various ways during different stages of its growth (Yoshida, 1978). 

Further, some stages are more sensitive to climatic factors than others 

(Wassmann et al., 2009a). Rice, alike other crops, also exhibits non-

linear relationships with various weather parameters, particularly 

temperature (Yoshida, 1981). Existing studies confirm that significant 

changes have occurred in the climate of this region during the 20th 

Century (Ramanathan et al., 2001; Ramanathan et al., 2005; Padma 

Kumari et al., 2007) and that in some regions in the tropics, weather is 

already approaching critical levels during the susceptible stages of rice 

growth (Wassmann et al., 2009b). Thus, the observed climatic changes 

(and attributed weather fluctuations) in the past may have had significant 

influences on rice productivity in the region. 

 

Assessing the historical weather sensitivity of rice in this region in 

the context of various non-climatic stresses (e.g., hunger, poverty, 

malnutrition, etc.) is therefore important (Wassmann and Dobermann, 

2007). Such assessment would enable to not only understand the extent 

of changes in rice production which could be already occurring due to 

changes in historical climate, but also to identify the rice producing 

regions vulnerable to weather shocks. 

 

Significant research to assess the weather sensitivity of rice in 

the tropical/subtropical regions of Asia has been conducted using both 

process-based experimental crop-simulation models and the statistical 

models, at different levels of disaggregation. The research focus has 

been primarily to identify the important climatic factors which affect rice 

growth and yield, their relative influence during various rice growth 

stages including the most important stages of growth, and the critical 

thresholds of these climatic factors during the most susceptible phases. 

The present study contributes to this rich body of literature by re-

examining the weather-rice yield relationship using detailed 

disaggregated (district-level) data over a long period of time (1969-

2007). The study highlights the significant adverse role played by the 
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increase in maximum temperature on rice yield. The study further argues 

that the rice production would have been significantly higher in India had 

the pre-1960s climatic conditions were to prevail during the period 1969-

2007. 

 

BACKGROUND 

Broadly two approaches are employed in the literature to explore the 

crop-weather relationship, viz., the agronomic models and the statistical 

models. Use of statistical models to estimate the functional relationship 

between climate (weather) and crop yield has gained significant attention 

in the recent climate change impact assessment literature. The statistical 

models have come to exist as an alternative approach to the 

experimental crop-simulation (agronomic) models. The agronomic models 

are best known for their ability to explore complex crop-environment 

functional relationship at various crop growth phases under experimental 

settings. However, these models lack the flexibility to easily adapt to new 

circumstances, face the challenge of aggregation over broader regions 

(Baron et al., 2005), and fail to account for farm adaptation possibilities 

(Mendelsohn, Nordhaus, and Shaw, 1994). On the other hand, using 

information available at various levels of disaggregation, the statistical 

models can be readily and flexibly applied at different scales – sub-

national, national, and global. As compared to the process-based models, 

these models perform better when applied at broader than farm-level 

scales (Lobell and Burke, 2010). Moreover, the cross-sectional models 

also account for the full range of farm adaptation possibilities owing to 

changes in the climate (Mendelsoh, Nordhaus, and Shaw, 1996). 

However, among several limitations associated with these models, 

omitted variables bias is one. In other words, the accuracy and precision 

of statistical models depends primarily on their ability to control for 

unobserved (omitted) factors confounding the true crop-weather 

relationship due to possible correlations with the weather variables 

identified in the model (Deschenes and Greenstone, 2007). Nevertheless, 
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statistical models associating historical yields with observed weather have 

become a common approach to explore crop-weather relationships and 

their potential implications to estimate climate change impact. 

 

Statistical studies on various crop-weather relationship have been 

conducted at global, regional, national, and sub-national scales (see for 

example, Lobell and Field, 2007; Lobell, 2007; Lobell et al., 2008; 

Auffhammer et al., 2006; Barnwal and Kotani, 2013).  

These models have also evolved over time, differing not only in region, 

scale, and time-period of their application, but also in the various 

modeling approaches employed, including the treatment of weather 

variables in these models (Lobell and Burke, 2010), and in their ability to 

produce more precise estimates by following the crop science closely 

(Roberts et al., 2013). For example, earlier statistical studies for various 

crops were based on simple measures of annual average weather and 

crop yield relationships (Nicholls, 1997). However, later applications of 

these models have considered ‘growing season’ specific direct (Lobell and 

Asner, 2003; Auffhammer et al., 2006; Lobell, 2007) and derived 

(transformed) weather measures (Schlenker and Roberts, 2006; 

Deschenes and Greenstone, 2007) in line with the agronomic literature. 

Additional weather measures (e.g., Tmin and Tmax) instead of Tavg 

considered in the agronomic studies have also been adopted by the 

statistical studies (Auffhammer et al., 2006; Lobell, 2007; Lobell and 

Field, 2007; Welch et al., 2010). Further, use of fine-scale spatial and 

temporal resolution weather information to explore the non-linear crop-

weather relation at more disaggregated levels has been a significant 

advancement in the application of statistical models (Schlenker and 

Roberts, 2009). Statistical studies have also been applied at the farm 

level to study crop-weather relationship (Welch et al., 2010). More recent 

developments in this strand of literature has been to study the effects of 

climate (weather) at different yield quantiles rather than just on mean 

yield (see Krishnamurthy, 2012; Barnwal and Kotani, 2013). 
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Previous studies exploring weather-rice yield relationship for 

India have shown a decline in historical yield owing to observed changes 

in the climatic conditions, including the effects of lower rainfall, 

increasing nighttime temperature, lower radiation and increased weather 

extremes (see for example Selvaraju, 2003; Krishna Kumar, 2004; Lal et 

al., 1998; Nagarajan et al., 2010; Yoshida and Parao, 1976; Praba et al., 

2004; Krishnamurthy et al., 2009). Emphasis has been laid on the effects 

of higher nighttime temperature (Tmin), in view of the increasing trends 

observed across the globe (Easterling et al., 1997) and for India (Padma 

Kumari et al., 2007; NATCOM, 2010). However, existing research does 

not provide sufficient insights into the effects of high nighttime 

temperature on rice (Wassmann et al., 2009a). On the other hand, the 

agronomic literature strongly points towards the detrimental effects of 

high (daytime) temperature and related heat stress on rice yield, with 

high temperature adversely affecting rice nearly at all stages of 

development (Wassmann et al., 2009a). Although worldwide and 

regionally, maximum temperature has not increased as fast as the 

minimum temperature (Vose et al., 2004), increasing maximum 

temperature could still have significant and large negative impact on rice 

yield. This is especially true for regions, including India, where maximum 

temperature is already approaching critical thresholds for rice 

development (Wassmann et al., 2009b) and exhibiting greater risks of 

yield damage due to heat stress (Teixeira et al., 2013). Moreover, since 

most of the rice cultivation takes place in the rainfed tropics, with tropical 

climate favouring rice growth (Yoshida, 1978), it is necessary to assess 

the relative influence of weather (specifically, daytime and nighttime 

temperature) on rice yield in a tropical climate. 

 

Previous studies exploring weather-rice yield relationship in India 

have suggested that rice yield has declined due to changes in historical 

weather characteristics. Using data on rice harvest for 9 Indian states 

covering large rice growing regions, Auffhammer et al. (2006) found rice 

harvest to have declined over the period 1972-1998 with changes in 
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historical climate characteristics attributable to the combined influence of 

atmospheric brown clouds and greenhouse gas emissions. Controlling for 

the influence of rainfall, solar radiation and other economic variables, the 

authors also found higher nighttime temperature during the ripening 

growth phase of rice had adverse effects on harvest. Using similar state 

level rice yield data during 1966-2002, Auffhammer et al. (2012) found 

that warmer nights during the ripening phase and changes in monsoon 

characteristics (especially weather extremes such as drought) had 

significant negative effects on rice yield. They conclude that increases in 

rice yield owing to improvements in farming technology have been 

partially offset by the observed changes in weather over the period 1966-

2002. 

 

The present study employs the statistical modelling approach to 

empirically estimate the historical weather-rice yield relationship using 

disaggregated (district) level of information for India during 1969-2007. 

In particular, the relative sensitivity of rice yield to specific weather 

measures (minimum and maximum temperatures, rainfall and solar 

radiation) corresponding to various rice growth phases has been 

assessed. 

 

METHODOLOGY AND DATA 

A common approach to assess the influence of weather on rice yield is 

the use of multivariate fixed effects panel data regression models. This 

technique has long been recognized as an important remedy for the 

omitted variables bias problem from which the cross-sectional statistical 

models suffer (see Mundlak, 1961). The fixed effects estimators in panel 

data models rely on variations in weather across time within a spatial unit 

(e.g., states, districts, counties, etc.) to identify the influence of weather 

parameters on the outcome of interest (i.e., yield). This technique 

removes the time-invariant unobserved factors specific to the spatial unit 

which may confound the true crop-weather relationship and overcomes 
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the omitted variables bias problem. Past statistical studies assessing the 

influence of weather on rice yield for US (see Deschenes and Greenstone, 

2007; Schlenker and Roberts, 2009) and for India (Guiteras, 2009; 

Auffhammer et al., 2012; Krishnamurthy, 2012) have primarily relied on 

this approach. Another approach is the use of first difference estimators 

usually employed in case of time-series statistical models. Some of the 

past studies assessing the influence of climate trends on yield of various 

crops are also based on this approach (see Nicholls, 1997; Lobell and 

Asner, 2003). However, under certain statistical properties, the fixed 

effects estimator is more efficient than the first difference estimator 

(Wooldridge, 2010).  

 

Regression Estimation 

The fixed effects model can be specified as per equation (1) below: 

 

           (1) 

 

 where the dependent variable  is rice yield in district i and in year t; 

 is a vector of (non-weather) farm inputs which includes labour, 

fertilizer, irrigation and area under High Yield Variety (HYV) rice;  is 

the vector of weather variables including temperature, rainfall, and solar 

radiation. All non-weather farm inputs and weather variables in the  

and vectors are expressed in their natural logarithms;  are the 

district fixed effects accounting for the time-invariant district specific 

unobserved factors;  and  are the time (year) fixed effects and the 

district specific annual (linear) time trend respectively;  are the 

idiosyncratic error terms. The log-linear model specification implies that 

the parameter vectors  and  corresponding to the non-weather and 

weather variables in the model should be interpreted as elasticities of rice 

yield with the respective variables. The model specification avoids the 

problem of endogeneity which occurs when rice harvest rather than yield 
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is modeled as the dependent variable, taking area of rice as an additional 

regressor (Auffhammer et al., 2012; Mundlak, 2001). Moreover, since 

yield follows a log-normal distribution, its natural logarithm, following a 

normal distribution, satisfies important statistical properties necessary for 

regression estimation. 

 

The vector  included broadly four weather measures, viz., 

average maximum temperature (Tmax) and average minimum 

temperature (Tmin), average surface radiation, and total rainfall. Further, 

each weather measure were defined corresponding to the growing 

season months of June through September and October through 

November, which resulted in a total of eight weather variables that were 

included in the model. The June-September period roughly covered the 

vegetative and reproductive growth phases, whereas the October-

November period represented the ripening phase. The correspondence 

between growing season months and various rice growth phases are 

approximate in view of large variations of rice sowing and harvesting 

dates across states (and possibly districts) as evident from the state-level 

crop-calendars (ICAR, 2008). Similar approach has been followed in 

previous studies on rice (see Auffhammer et al., 2012; 2006). Effects of 

these weather variables corresponding to various rice growth phase on 

rice yield were estimated after controlling for the farm level inputs such 

as labour, fertilizer, irrigation and HYV area included in . However, 

with changing weather patterns and resulting shifts in the distribution of 

weather shocks, the equilibrium response of these farm inputs may also 

get adjusted over time (see Kelly, Kolstad, and Mitchell, 2005), which 

could affect the estimated model parameters. Thus, a model specification 

which muted the influence of the economic (non-weather) variables was 

estimated. A comparison of the original model with economic variables 

and the one without economic variables would inform the nature and 

extent of influence of the non-weather variables on the weather-yield 

relationship. 
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District specific unobserved characteristics, which do not change 

over time, and are correlated with the weather variables (e.g., soil 

quality) may confound the true effects of weather on rice yield. These 

unobserved factors were removed by including the district-fixed effects 

( ). Time demeaned and detrended weather and non-weather variables 

were obtained by using the year fixed effects ( ) and annual time trend 

and ( ) to control for additional time-varying sources of variation 

affecting rice yield. The influence of factors which can vary over state 

and year (or region and year) as suggested by Deschenes and 

Greenstone (2007) was not considered under the given model 

specification.  

 

Recent literature has raised significant concern over the changes 

in the distributional characteristics (mean, variances, and covariance) of 

the weather variables over time due to climate change (Mc Carl et al., 

2008). Since the study deals with time series data at the district level, it 

was necessary to test for the stationarity of each of the regressors in  

 and  . The stationarity tests were performed using Im-Pesaran-

Shin (2003) panel unit root test. The Im-Pesaran-Shin (2003) unit root 

test has the advantage of not imposing a common autoregressive 

parameter restriction on the panels (districts) and is based on a set of 

Augmented Dickey-Fuller Regressions to estimate the t-statistic first 

before averaging it across panels. The unit-root tests were carried out 

under various assumptions on the structure of the panel: (a) fixed N and 

T; (b) fixed T, but N   and (c) both N and T asymptotically 

sequentially approaching infinity. In view of the significant trends 

observed for most variables in the model, separate tests were performed 

with and without time trend taken into account. 

 

Both the Wald statistic (see p. 598; Greene, 2000) and the F-

statistic (based on first differenced error) (see p. 319, Wooldridge, 2010) 

respectively rejected (at P < 0.01) the null-hypotheses of residuals ( ) 
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being homoskedastic and first order serially uncorrelated. For valid 

inference and hypotheses testing of the estimated model parameters the 

covariance matrix, thus, standard errors (SEs) must be robust to non-

constant error variance across districts, non-zero covariances between 

districts and within district error correlation over time. The 

heteroskedasticity and autocorrelation consistent (HAC) robust 

covariance matrix and SEs were estimated by clustering the residuals at 

district level (see p. 197, Wooldridge, 2010; p. 1818, Deaton, 1995). 

 

To assess sensitivity of kharif rice yield to the relative influence 

of various weather measures, especially daytime (maximum) temperature 

and nighttime (minimum) temperature, during key development phases 

of the crop, two separate models (as specified in equation (1)) were 

estimated. The first model estimated the relationship between rice yield 

and minimum temperature (Tmin) controlling for rainfall and non-weather 

variables and removing other unobserved factors. The second model 

included maximum temperature (Tmax) variable along with Tmin, and the 

same set of control variables as the first model. A comparison of both 

model coefficients and their simulated impacts (discussed below) would 

determine the relative effects of the two temperature measures – Tmax 

and Tmin – on rice yield. 

 

Simulation of Impact 

The estimated coefficients vector for the weather variables ( ) obtained 

from equation (1) measures the sensitivity of rice yield to the weather 

conditions which prevailed during 1969-2007 in India. Existing literature 

has suggested that significant changes have occurred in the pre-1960 

climatic conditions. As mentioned earlier, these changes consists of 

reductions in monsoonal rainfall and surface radiation (Ramanathan et 

al., 2005; Padma Kumari et al., 2007), increasing daytime and nighttime 

temperatures (Padma Kumari et al., 2007; Kothawale et al., 2005) and 

weather extremes (especially, drought and rainfall extremes) (Dash et 

al., 2009; Krishnamurthy et al., 2009). In other words, the average 
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weather conditions in India have ‘worsened’ in the post-1960 period as 

compared to the pre-1960 average weather. With climatic factors having 

significant influence on the growth and yield of rice (Yoshida, 1978) the 

worsened average weather (climatic) conditions could have had adverse 

effects on all-India average rice yield during 1969-2007. In order to 

validate this argument, a statistical simulation exercise was carried out on 

lines similar to that adopted by Auffhammer et al. (2012). The simulation 

enabled to understand the extent to which all-India average rice yield 

would have differed (from the observed yield), if the pre-1960 (1930-60) 

climate had continued to prevail during 1969-2007, i.e., had changes in 

the pre-1960 climate not occurred. The impact simulation exercise (with j 

weather variables) hinges on the following equation:1 

 

 

  

which essentially suggests the comparison of all-India (expected) rice 

yield across all years during 1969-2007 under two climate scenarios: 

without climate change and with climate change. Expected yield for a 

given year (t) during 1969-2007 under the with climate change scenario 

is simply the predicted yield ( ) based on actual weather ( ) for that 

year and the estimated parameters ( ) from equation (1). However, 

during 1969-2007 without climate change scenario weather ( ) are not 

observable. As a consequence, the corresponding yield ( ) based on  

are also not observable. Therefore, statistical simulation exercise was 

employed to construct counterfactual (‘expected’) weather, which would 

have prevailed during 1969-2007, had the climate not changed. The 

                                                 
1 A Cobb-Douglas functional form, which is a standard functional specification in the empirical 

production function estimation literature was considered for the simulation analysis (see Mundlak, 
2001; Deaton, 1995). 
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counterfactual weather ( ) was assumed to follow a multivariate 

normal distribution. Under this assumption, Monte Carlo simulations were 

performed to obtain ten thousand draws for the   for 1969-2007 using 

the first and second order moments obtained from the pre-1960 (1930-

1960) climate. For each year, the simulated weather variables were then 

averaged across draws to obtain the ‘expected’ weather which would 

have prevailed during 1969-2007 had the climate remained the same as 

before 1960. Using these ‘expected’ weather values and the estimated 

parameters ( ) the counterfactual expected yield ( ) for each year t 

during 1969-2007 under the without climate change scenario were 

obtained. 

 

To calculate the impact due to changes in average weather 

(climate), first the ratio of the simulated yield ( ) to predicted yield ( ) 

for each year as per equation (2) was calculated. Average of these ratios 

over the 39 year period during 1969-2007 (say, ) would suggest the 

loss/gain in all-India average yield, had the pre-1960 climate continued 

to prevail during 1969-2007. More specifically, depending on whether  

> 1 or  < 1 rice yield would have been  percent 

higher/lower due to changes in climate. 

 

Data 

Data for regression estimation 

Both non-weather and weather data at the Indian district level for 1969-

2007 were necessary for the regression analysis of the present study. 

Details of these variables are reported in Table 1 below. 
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Table 1: Description of Variables with Source 

Variables Unit Frequency Resolution / level 
of disaggregation 

Source 

Variables for Regression Estimation 
Yield Tons/ha Annual District India Agriculture and Climate Dataset (World Bank); ICRISAT. 
     Irrigated Area '000 Hectares Annual District                                    -do- 
     Fertilizer '000 Tons Annual District                                    -do- 
     Labour Number of persons Annual District                                    -do- 
     HYV '000 Hectares Annual District                                    -do- 
     Minimum Temperature Deg. Celsius Daily (1o x 1o ) Grid Srivastava et al. (2009), India Meteorological Department. 
     Maximum Temperature Deg. Celsius Daily (1o x 1o ) Grid Srivastava et al. (2009), India Meteorological Department. 
     Rainfall* mm. Daily (1o x 1o ) Grid Rajeevan et al. (2005), India Meteorological Department. 
     Radiation$ Wh.m-2 Daily Met. Station World Radiation Data Center Online Archive  

(http://wrdc-mgo.nrel.gov). 
Variables for Simulation 
Minimum temperature Deg. Celsius Monthly (0.5 o x 0.5 o) Grid Mitchel and Jones (2005); India Water  Portal 
    Minimum temperature Deg. Celsius Monthly (0.5 o x 0.5 o) Grid Mitchel and Jones (2005); India Water  Portal 
    Rainfall mm. Monthly All India Kothawale et al. (2006), Indian Institute of  Tropical 

Meteorology 

     Note: All variables used in regression estimation are for time period 1969-2007. Data for simulation are for the period 1930-1960. The economic variables 
obtained from the World Bank dataset span upto year 1987. For the period 1988-2007 these variables were obtained from ICRISAT. Both World 

bank and ICRISAT dataset districts were referenced to 1961 census districts. Irrigated Area, Fertilizer and Labour were available for all crops at the 
district level were prorated using rice's share of total crop area (or Gross Cropped Area) and expressed per hectare. Labour variable consists of 
number of rural male agricultural labourers and cultivators.  

        * A three year-moving average method was applied to fill the data gaps in the IMD rainfall data.  
        $ Daily solar radiation data of the meteorological stations falling within a state were averaged across stations to obtain the state-level monthly 

average solar radition data. For states with a single or no meteorological station information available, contiguous station data were used to impute 
the state level average values. 
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(a) Non-weather data 

Information on the non-weather variables were obtained from two 

comprehensive datasets, viz., (1) India Agriculture and Climate Dataset 

of the World Bank; and (2) Village Dynamics in South Asia (VDSA) meso-

level dataset of the International Crops Research Institute for the Semi-

Arid Tropics (ICRISAT). Both datasets provide comprehensive information 

on Indian agriculture at the district level. Information contained in both 

datasets have been collected from official (secondary) sources including 

reports and publications of Ministries under the Government of India and 

different State Governments, and various other institutions (bodies) 

which are responsible for the sole dissemination of these information.2 

 

The World Bank dataset has been earlier used in several India 

specific studies to: (a) assess the economic impacts of climate change on 

Indian agriculture (see Dinar et al., 1998; Kumar and Parikh, 2001; 

Sanghi and Mendelsohn, 2008; Kumar, 2009; Guiteras, 2009; Kumar, 

2011); and (b) evaluate historical performance of other socio-economic 

aspects in the Indian context with the backdrop influence on agriculture 

(see for example, Banerjee and Iyer, 2005; Jayachandran, 2006; Pande 

and Duflo, 2007; Taraz, 2013). The dataset contained agricultural input, 

output and climatic information for 1956-1987 for 271 districts (as per 

1961 Indian Census). In view of its wide use for India specific studies on 

climate change agricultural impacts and related applications, the World 

Bank dataset was taken as the base dataset. Thus, data for 271 districts 

for the period 1969-1987 on inputs including rice area, labour, fertilizer, 

irrigated area and HYV rice area and output (rice production) were 

obtained from this dataset. Post-1987 data on these non-weather 

variables for the 271 Indian districts covered in the World Bank dataset 

were supplemented by the ICRISAT dataset. These non-weather 

information from the ICRISAT dataset were available up to year 2007, 

which was taken as the final year for the present study. Additionally, the 

                                                 
2  See Dinar et al. (1998) and ICRISAT (2012) for details of these sources. 
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non-weather data for 26 districts corresponding to three major 

agricultural states, viz., Kerala, Assam, and Himachal Pradesh, which 

were missing from the World Bank dataset, were also obtained from the 

ICRISAT dataset. Thus, a total of 297 districts which existed as of 1961 

Indian Census were taken into account for the present study. 

 

The present study focuses on kharif rice, the same being the 

dominant rice growing season in India.3 However, the information on rice 

area and production for the 297 Indian districts, obtained from both 

datasets, were annual totals, i.e., area and production for both kharif and 

rabi growing seasons taken together. To obtain district level area and 

production for kharif rice, state-level proportions of kharif rice area and 

production for 1969-2007, available from the Ministry of Agriculture, were 

applied respectively to the district level annual totals of rice area and 

production. The dependent variable in the regression model, kharif rice 

yield (defined as production per unit area), was obtained by dividing 

district level kharif rice production by kharif rice area. Other non-weather 

variables, viz., labour, fertilizer, and irrigation which were available for all 

crops grown in a district were apportioned using rice's share of total crop 

area (Gross Cropped Area) and expressed per hectare to obtain rice 

specific farm inputs. 

 

(b) Weather data 

Weather variables necessary for the regression were obtained from two 

sources. Information on temperature and rainfall were available from the 

Indian Meteorological Department (IMD), whereas solar radiation data 

was available from World Radiation Database. The temperature 

(maximum and minimum) and rainfall data for the 297 Indian districts 

included in the study were based on the daily gridded data of  

latitude/longitude resolution recently made available by the IMD 

                                                 
3  In 2011, kharif rice accounted for more than 84 percent of the total rice production in the country 

(Ministry of  Agriculture, Govt. of India, 2012)  
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(Srivastava et al., 2009; Rajeevan et al., 2005). The daily gridded 

temperature data for India were available from year 1969 onwards, 

which determined the initial year for the study. The district level daily 

weather information was obtained from the daily gridded weather 

observations using spatial interpolation technique. The district level daily 

weather information was then averaged over days in a month to get the 

district level monthly average weather. Daily sum and monthly mean 

solar radiation data for 1969-2007 were available at the meteorological 

station level for 13 stations uniformly distributed across different parts of 

India. The monthly mean solar radiation data were averaged across 

meteorological stations (falling within a state) to obtain state-level 

monthly mean solar radiation. For states with one or no meteorological 

station-level information, contiguous station data were used to impute 

the state-level average radiation values.  

These state-level mean monthly radiation values were then uniformly 

applied for all districts within each state. 

 

To obtain average weather corresponding to the various rice 

growth phases, the monthly weather measures, viz., average maximum 

and minimum temperatures, average solar radiation, and total rainfall 

were averaged across the growing season months of June-September 

and October-November. The choice of all-India overall kharif growing 

season months (June-November) and growing season months 

corresponding to the growth phases (June-September and October-

November) was based on all-India and state-level kharif rice crop 

calendar of the Crop Science Division, Indian Council of Agricultural 

Research (ICAR) and existing literature (see Auffhammer et al. 2006; 

2012; Lobell, 2007; Lobell et al., 2008). 
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Data for simulation 

All-India aggregated monthly weather information during 1930-1960, 

representing the pre-1960 climate regime, was necessary for the 

simulation exercise (see Table 1). District level monthly average 

maximum and minimum temperature data for the period 1901-2002 were 

available from the India Water Portal, which was based on the high-

resolution ( ) monthly weather dataset of the Climate Research 

Unit (CRU TS 2.1; Mitchell and Jones (2005)). The district level monthly 

mean temperature data for 1930-1960 were first averaged across 

growing season months – June-September and October-November -- 

which were then aggregated using 1969-2007 average of the gross 

cropped area for each district. All-India aggregated level monthly rainfall 

data was obtained from the fairly long rainfall time series (1871-2012) 

available from the Indian Institute of Tropical Meteorology (Kothawale et 

al., 2006). 

 

RESULTS 

Estimation Results 

The fixed effects model specification was adopted based on the 

specification test suggested by Hausman (1978). The stationarity tests 

for the relevant variables were performed using the Im-Pesaran-Shin 

(2003) panel unit-root tests. Test results under various assumptions with 

and without trend included are presented in Table 2. In all cases 

considered, the null-hypothesis of a unit-root was rejected at 1 percent 

level of significance suggesting that the series were stationary and can 

be modeled. 

 

 

 

 

 

 



18 

Table 2: Stationarity Tests of Model Variables Under Various Parameter Assumptions 

Variables Fixed N exact t-statistic Fixed T, asymptotic N Asymptotic T and N 

Without 
Trend 

With Trend Without Trend With Trend Without Trend With Trend 

tbar tbar Zt-tilde-bar p-value Zt-tilde-bar p-value Wt-bar p-value Wt-bar p-
value 

Yield -4.49*** -5.21*** -44.79 0.000 -53.34 0.000 -49.74 0.000 -60.08 0.000 
Jun-Sep: Tmin -4.68*** -5.12*** -47.71 0.000 -53.03 0.000 -58.55 0.000 -59.32 0.000 
Oct-Nov: Tmin -5.03*** -5.41*** -51.90 0.000 -56.08 0.000 -58.27 0.000 -66.73 0.000 
Jun-Sep: Tmax -5.80*** -6.03*** -58.22 0.000 -60.88 0.000 -82.08 0.000 -79.63 0.000 
Oct-Nov: Tmax -5.15*** -5.35*** -53.33 0.000 -55.75 0.000 -70.44 0.000 -67.06 0.000 
Jun-Sep: Sol. Rad. -5.14*** -5.32*** -53.02 0.000 -55.58 0.000 -64.73 0.000 -66.86 0.000 
Oct-Nov: Sol. Rad. -4.21*** -4.52*** -42.74 0.000 -47.40 0.000 -52.74 0.000 -49.43 0.000 
Jun-Sep: Rainfall -4.03*** -4.93*** -39.39 0.000 -50.09 0.000 -39.73 0.000 -52.98 0.000 
Oct-Nov: Rainfall -5.21*** -5.35*** -53.34 0.000 -55.28 0.000 -68.82 0.000 -64.72 0.000 
Labour -2.13*** -3.27*** -10.01 0.000 -29.03 0.000 -8.29 0.000 -20.73 0.000 
Fertilizer -2.64*** -3.43*** -19.19 0.000 -31.87 0.000 -19.17 0.000 -25.91 0.000 
Irrigation -2.39*** -3.35*** -14.78 0.000 -30.71 0.000 -16.24 0.000 -25.73 0.000 
HYV -3.55*** -3.55*** -32.88 0.000 -30.36 0.000 -40.75 0.000 -29.50 0.000 
Note: t-bar calculated under fixed T and N follows a t-distribution and represents average of the panel-level t-statistics obtained 

through Augmented Dickey-Fuller regressions. Z-ttilde-bar calculated under fixed T and asymptotic N assumption follows a 
standard normal distribution. The corresponding p-values are reported in the adjacent column. W-tbar are calculated under 
sequentially asymptotic T and N has an asymptotically standard normal distribution. W-tbar statistics is appropriate under serial 
correlation, where the ADF regressions were carried out including appropriate number of lags which minimized the Bayesian 
Information Criterion (BIC). Fixed N critical values without time trend for 1percent, 5percent and 10percent are -1.73, -1.67, -
1.64 respectively. Fixed N critical values with trend for 1percent, 5percent and 10percent are -2.36, -2.31, -2.28 respectively. 

***   significant at 1 percent. 
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Table 3 presents the estimated model results. Two models are 

estimated and compared in terms of their overall impacts on rice yield in 

order to understand the effects of daytime temperature relative to 

nighttime temperature in affecting rice yield. The first model follows 

Auffhammer et al. (2012) and estimates the effect of minimum 

temperature (Tmin) on rice yield, while controlling for the influence of 

other weather variables including rainfall and solar radiation, and the 

non-weather variables. The second model estimates the relative effects 

of both minimum (Tmin) and maximum temperature (Tmax) with the same 

control variables as in Model 1. 
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Table 3: Regression Estimates for Kharif Rice in India: 
1969-2007 

Dep Var: ln(yield) With Econ Vars Without Econ Vars 

Model 1 Model 2 Model 3 Model 4 

Tmin (Jun-Sep) 0.924** 1.718*** 0.460 1.604*** 
 [0.020] [0.000] [0.128] [0.000] 

Tmin (Oct-Nov) -0.597*** -0.258* -0.547*** -0.292** 
 [0.000] [0.098] [0.000] [0.024] 

Tmax (Jun-Sep)  -3.198***  -2.703*** 
  [0.000]  [0.000] 

Tmax (Oct-Nov)  -2.864***  -2.469*** 

  [0.000]  [0.000] 
Sol. Rad. (Jun-Sep) -0.439*** -0.229*** -0.653*** -0.481*** 

 [0.000] [0.010] [0.000] [0.000] 
Sol. Rad. (Oct-Nov) -0.408*** -0.227** -0.627*** -0.457*** 

 [0.000] [0.017] [0.000] [0.000] 

Rainfall (Jun-Sep) 0.134*** 0.0915*** 0.118*** 0.0846*** 
 [0.000] [0.000] [0.000] [0.000] 

Rainfall (Oct-Nov) 0.00137 -0.0169*** -0.00486 -0.0201*** 
 [0.728] [0.000] [0.111] [0.000] 

Labour -0.0375 -0.0252   

 [0.209] [0.374]   
Fertilizer 0.0372** 0.0264*   

 [0.027] [0.095]   
Irrigation 0.0421** 0.0341**   

 [0.016] [0.026]   
HYV 0.0385*** 0.0468***   

  [0.010] [0.001]     

No of Obs. 8191 8191 10586 10586 
R2 0.769 0.781 0.749 0.759 

Adj. R2 0.760 0.772 0.740 0.751 

F 54.60 59.30 54.52 58.59 
Note:     All models include district and time fixed effects and linear time trend. All 

variables expressed in natural logarithm. p-value in square brackets in second 
row correspond to cluster-robust SEs. 
* Significant at 10 percent; ** Significant at 5 percent; *** Significant at 1 

percent. 
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As listed in Table 3, column 1, all weather variables except 

October-November rainfall were statistically significant. Among the 

economic control variables, all except agricultural labour were significant. 

Minimum temperature effects seemed to differ across different growth 

phases: higher Tmin during the vegetative and reproductive phases 

improved yield, whereas higher Tmin during the ripening phase decreased 

rice yield. This is what is usually reported in the process based models 

where effect of temperature varies across development phases (Yoshida, 

1978; 1981) and shows opposing effects on rice yield. The negative 

influence of October-November Tmin during the ripening phase was highly 

significant (P < 0.001) with rice yield falling  0.6 percent for each 1 

percent increase in Tmin, controlling for other covariates. On the other 

hand, each 1 percent increase in June-September Tmin during the 

vegetative and reproductive phases was associated with an increased 

yield of 0.92 percent. The June-September rainfall variable corresponding 

to the vegetative and reproductive phase was positive and significant, 

suggesting rice yield increases with higher rainfall. 

 

Both solar radiation variables showed statistically significant (P < 

0.001) inverse association with rice yield. In view of the significant solar 

dimming trends observed for India (Padma Kumari et al., 2007), such 

association would suggest that rice yield improved with decreasing 

radiation. Similar negative relationship was found during the vegetative 

growth phase of rice in tropical/sub-tropical Asia (Welch et al., 2010). 

Existing India specific studies also reported negative relation between 

rice yield and surface radiation. However, the association was found to 

be insignificant due to the inclusion of more aggregated and hence less 

accurate radiation variables in the model owing to the unavailability of 

disaggregated data (see Auffhammer et al., 2006; 2012). Such inverse 

association which is in contrast to those suggested by the agronomic 

studies, could be attributed to already high levels of incident solar 

radiation exceeding the optimum thresholds at different rice growth 

phases. For example, in a tropical climate solar radiation of  
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300 Cal.cm-2.day-1 (  12.5 MJ.m-2.day-1) is necessary for an optimum 

yield of 5 t/ha (Yoshida, 1981). Using a quadratic model specification, 

Welch et al. (2010) found the ‘turning point’ level of solar radiation after 

which yield falls  12.8 MJ.m-2.day-1 during the vegetative phase (see 

Table S10, Welch et al. 2010). The overall marginal effect of the solar 

radiation variable (including the quadratic radiation variables) was 

negative. During 1969-2007, the All India average of June-September 

surface radiation was  17.6 MJ.m-2.day-1. Further, experimental 

evidence based on some crops as opposed to the process based models 

has suggested that yield could improve with slight fall in total radiation, 

and increases in diffuse radiation (Stanhill and Cohen, 2001). Moreover, 

the strong positive association between maximum temperature and solar 

radiation variables, with maximum temperatures already reaching critical 

thresholds during the rice growth phases in India (Wassman et al., 

2009b) could be another explanation for such inverse association. 

 

Column 2 in Table 3 reports the Model 2 results with maximum 

temperature (Tmax) included as an additional regressor into Model 1. Both 

June-September and October-November Tmax variables had a highly 

statistically significant (P < 0.001), negative influence on rice yield. That 

is, higher Tmax during the vegetative and reproductive stage and the 

ripening phase decreases rice yield. This is according to the crop models 

studies where the impact of Tmax is suggested to have negative influence 

nearly at all rice growth phases (Wassmann et al., 2009a). The influence 

of Tmax during the vegetative and reproductive phase was found to be 

higher than that during the ripening phase: each 1 percent increase in 

Tmax during the vegetative and reproductive phase resulted in 

approximately 3.2 percent decrease in rice yield as against a 2.9 percent 

decline in yield during the ripening phase. 

 

Inclusion of Tmax had significant influence on Tmin. Although, both 

Tmin variables remained statistically significant and retained the signs as 
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in Model 1, the magnitude of the variables changed significantly. Tmin 

during Jun-Sep increased by almost 2 times whereas Tmin during October-

November reduced by more than half with the inclusion of Tmax. The 

statistical significance of both Tmin variables changed: June-September 

and October-November Tmin were now significant at P < 0.001 and P < 

0.1 as compared to P < 0.05 and P < 0.001 in Model 1. This could be 

due to the positive correlation between maximum and minimum 

temperature and their opposing effects on rice during the vegetative and 

reproductive growth phases (Welch et al., 2010). 

 

As expected, addition of Tmax variables into the model also had 

influence on the rainfall variables. The June-September rainfall variable 

was significant (P < 0.001) and had positive influence on rice yield. 

However, the estimated coefficient for June-September rainfall reduced  

 32 percent in magnitude as compared to Model 1 estimated coefficient 

for June-September rainfall with the inclusion of Tmax. That is, the 

positive influence of rainfall on rice yield reduced when the effects of Tmax 

was taken into account. However, October-November rainfall had a 

significant (P < 0.001) and negative influence on rice yield: 1 percent 

higher rainfall during the ripening phase resulted in 0.02 percent decline 

in rice yield. Compared to other growth phases, water requirements of 

rice during the ripening phase is relatively less. Moreover, ripening phase 

is the most susceptible to excess rainfall. Therefore, additional rainfall 

over and above the required amount during this phase could be a reason 

for the yield loss. That is, for given levels of the control variables 

including Tmax during October-November, a higher rainfall during the 

ripening phase could be detrimental to crop yield. 

 

Inclusion of Tmax variable also influenced the solar radiation 

variables in the model. In Model 2, both solar radiation variables 

continued to show similar inverse association with rice yield as in Model 

1. However, the estimated radiation variables in Model 2 were 

approximately half the size of those estimated in Model 1. The influence 
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of other economic variables (except HYV rice) on rice yield marginally 

declined with the inclusion of the maximum temperature. This suggests 

that the sample estimates for the economic variables were upward biased 

due to the non-inclusion of Tmax. The HYV of rice developed in the mid-

1960s are more heat tolerant. This is reflected by the small increment in 

the estimated coefficient for HYV rice in Model 2 over that in Model 1. 

 

Both Model 1 and Model 2 were estimated ignoring the influence 

of non-weather variables and are respectively given in Column 3 and 4, 

Table 3. Model 3 estimates reflect that the exclusion of the non-weather 

variables had a significant influence on June-September Tmin which 

became insignificant, and almost half the size of that estimated under 

Model 1. This could be due to low correlation of Tmin with some non-

weather variables (r <0.1), exclusion of which could bias the estimates. 

In other words, the true effect of June-September Tmin becomes more 

evident with the inclusion of the economic variables. The negative effects 

associated with October-November Tmin, however, remained robust (P < 

0.001). The June-September rainfall remained significant and did not 

show much perturbation to the exclusion of the non-weather variables. 

Both the solar radiation variables continued to be significant and negative 

with the (absolute) magnitude of these variables increasing  50 percent 

with the exclusion of the non-weather variables. One reason is the non-

inclusion of Tmax variables which are correlated with the solar radiation 

variables during the growth phases. Thus, the exclusion of non-weather 

variables on the radiation variables would be more clear once the effects 

of Tmax has been controlled for as discussed below. 

 

Comparison of Model 4 estimates with Model 2 also reveals some 

interesting relation between the weather and the non-weather variables. 

The inclusion of the non-weather variables reflected the true effects 

associated with both the Tmin variables: including the non-weather 

variables increased the positive effects of Tmin on yield during the 

vegetative and reproductive state and reduced the negative effects of 
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Tmin during the ripening phase. The negative effects of both Tmax 

variables however remained robust, and increased in their precision, in 

terms of lower SEs and P-values, with the inclusion of the non-weather 

variables. After controlling for the influence of Tmax, exclusion of the non-

weather variables had negligible effect on the solar radiation variables. 

Similarly, the positive influence of June-September rainfall and the slight 

negative influence of October-November rainfall on rice yield respectively 

increased and decreased with the inclusion of the non-weather variables 

into the model. 

 

Table 4 reports the joint and equality tests of significance of the 

model parameter. The effect of Tmax during June-September did not differ 

significantly from October-November Tmax, raising concern over the 

inclusion of both Tmax variables into the models (Model 2, and Model 4). 

However, within a growth phase (June-September or October-November) 

the effects of Tmax was significantly different from the effects of Tmin, 

which gives sufficient reason for the inclusion of Tmax during both the 

growth phases. Further, even if the elasticity of Tmax was not statistically 

different across both growth phases, the trends underlying the Tmax 

variables could be different across growth phases and may result in an 

overall non-zero impact due to increasing daytime warming. Similarly, 

both solar radiation variables which did not statistically differ across 

growth phases were included because within each phase their effect was 

significantly different from that of the Tmax. 
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Table 4: Joint and Equality Tests of Hypotheses 

Tests of Hypotheses P-values 

Model 2 Model 4 

Joint tests of significance   

All Tmin = 0 0.000 0.000 

All Tmax = 0 0.000 0.000 
All Rain = 0 0.000 0.000 

All Sol. Rad.= 0 0.001 0.000 
All Tmin = All Tmax = 0 0.000 0.000 

All T = All Rain = 0 0.000 0.000 

All T = All Rain = All  Sol. Rad = 0 0.000 0.000 
   Jun-Sep: Tmin = Tmax = 0 0.000 0.000 

Jun-Sep: Tmin = Tmax = Rain = 0 0.000 0.000 

Jun-Sep: Tmin = Tmax = Rain = Sol. Rad. = 0 0.000 0.000 
   Oct-Nov: Tmin = Tmax = 0 0.000 0.000 

Oct-Nov: Tmin = Tmax = Rain = 0 0.000 0.000 

Oct-Nov: Tmin = Tmax = Rain = Sol. Rad. = 0 0.000 0.000 
   All Econ. Vars: Labour, Fertilizer, Irrigation, 

HYV = 0 
0.000 - 

All Year Fixed Effects = 0 0.000 0.000 
   Equality tests across growth phase   
Jun-Sep: Tmin = Oct-Nov: Tmin 0.000 0.000 

Jun-Sep: Tmax = Oct-Nov: Tmax 0.505 0.616 
Jun-Sep: Rainfall = Oct-Nov: Rainfall 0.000 0.000 

Jun-Sep: Sol. Rad. = Oct-Nov: Sol. Rad. 0.985 0.830 

   Equality tests within growth phase   

Jun-Sep: Tmin = Jun-Sep: Tmax 0.000 0.000 
Oct-Nov: Tmin = Oct-Nov: Tmax 0.000 0.000 

Jun-Sep: Tmax = Jun-Sep: Sol. Rad. 0.000 0.000 
Oct-Nov: Tmax = Oct-Nov: Sol. Rad. 0.000 0.000 

P < 0.10 : Significant at 10 percent 
P < 0.05 : Significant at 5 percent  
P < 0.01 : Significant at 1 percent 

 

Simulation Results 

The simulation results corresponding to Model 1 and Model 2 are 

presented in Table 5 below. 

 



27 

Table 5: Simulation Results 

Variables Model 1  Model 2 

With Econ Vars Without Econ Vars  With Econ Vars Without Econ Vars 

Individual 
Effect  

Combined 
Effect  

Individual 
Effect  

Combined 
Effect  

 Individual 
Effect  

Combined 
Effect  

Individual 
Effect  

Combined 
Effect  

Jun-Sep: Tmin 0.54 0.54 0.27 0.27  1.02 1.02 0.95 0.95 

Oct-Nov: Tmin 0.58 1.12 0.54 0.81  0.26 1.28 0.28 1.23 

Jun-Sep: Rain 1.05 2.17 0.91 1.72  0.71 1.99 0.66 1.89 

Oct-Nov: Rain 0.00 2.18 -0.07 1.65  -0.24 1.75 -0.27 1.62 

Jun-Sep: Tmax - - - -  1.48 3.23 1.21 2.83 

Oct-Nov: Tmax - - - -  5.15 8.38 4.42 7.24 

Note: All values in percent 
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Simulations were performed starting with June-September Tmin 

and progressively adding other weather variables in order calculate the 

individual effects and the combined effects of the weather variables. Both 

individual effects and combined effects corresponding to Model 1 and 

Model 2 were estimated separately. Model 1 simulation results suggest 

that during 1969-2007, all-India aggregated kharif rice yield would have 

been 2.18 percent higher had the changes in the pre-1960 climate 

characteristics not occurred. Reduction in June-September rainfall had 

the largest individual effect, and reduced rice yield by 1.05 percent. The 

combined effects of higher Tmin during all growth phases (June-

September and October-November) had reduced rice yield by 1.12 

percent during 1969-2007. The impact of higher Tmin during October-

November was slightly higher than that during June-September. 

Decrease in October-November rainfall had negligible effect on rice yield, 

perhaps due to little water requirement by rice plant during this phase. 

 

Model 2 simulation results which included Tmax suggests that 

during 1969-2007 all-India rice yield would have been  8.4 percent 

higher had the pre-1960 climate prevailed. Higher October-November 

Tmax was the largest individual contributor to the yield loss decreasing 

rice yield  5.2 percent. Higher Tmax during June-September was the 

next big contributor to the yield loss. Combined effects of higher Tmax 

during both June-September and October-November suggests that yield 

would have been 6.7 percent higher had the daytime warming not 

occurred. Higher Tmin during both June-September and October-

November and lower rainfall during June-September resulted in an 

additional 2 percent loss. Yield would have been 0.24 percent lower had 

the pre-1960 October-November rainfall prevailed during 1969-2007. This 

implies that during the later part of the growing season (ripening phase), 

when more of heat and sunlight and less of water is necessary for crop 

maturity, reduction in the rainfall was beneficial. 
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DISCUSSION AND CONCLUSIONS 

The present study empirically assessed the weather sensitivity of rice 

yield in India using a district level panel data over the period 1969-2007. 

Using fixed effects multivariate panel regression technique the study 

estimated the relative influence of various weather parameters. The 

overall impact of changes in the climate on rice yield were simulated 

using the estimated model parameters. The study results found 

significant adverse influence of higher maximum and minimum 

temperature and reduced rainfall on rice yield during 1969-2007 

compared to the pre-1960 climate. Several caveats of the study includes 

the failure to account for the gradual time-varying unobserved factor 

which could be potentially be correlated with the weather variables 

included in the model (Fisher et al., 2012). Further, the methodology 

applied here does not in any way suggest the likely sensitivity of rice due 

to the future climatic changes, but is only indicative of the extent of loss 

which could be already occurring owing to the historical changes in the 

climate. One of the assumptions of the model while simulating the impact 

was to hold the influence of non-weather factors fixed. This was primarily 

owing to the unavailability of the pre-1960 information pertaining to the 

non-weather variables. However, the non-weather variables could be 

adjusting to the weather changes occurring over time and therefore, 

assuming the weather variables to be fixed could lead to mal-adjustment 

of the non-weather variables to the changes occurring in the weather 

variables. 

 

The study results show that all-India kharif Rice yield would have 

been  8.4 percent (or cumulative 172 million tons) higher had the pre-

1960 climate prevailed during 1969-2007. Daytime (maximum) 

temperature (Tmax) was the main source of yield reduction, especially 

during the later parts of the growing season. The model results confirm 

with some of the agronomic literature results which suggest detrimental 

effects of high temperature on rice growth and yield. Further, the results 
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are also in accordance with the existing statistical studies of global scale 

climate-crop yield and national cereal yield, which found negative 

response of rice yield to higher Tavg and diurnal temperature range (Tmax- 

Tmin), and more specifically, daytime temperature increase to be more 

detrimental than increases in nighttime temperature (Lobell, 2007; Lobell 

and Field, 2007). 

 

The present study’s results therefore differ from recent studies 

on rice which have assessed relative influence of Tmax and Tmin during 

various rice growth phases. These studies have found that Tmin plays a 

more important role than Tmax in affecting rice yield (see Peng et al., 

2004; Nagarajan et al., 2010; Welch et al., 2010), and both having 

significant opposing effects on yield: Tmin reduces rice yield whereas Tmax 

increases yield. The present study found that Tmax played a bigger role 

than Tmin in adversely affecting rice yield in India. The study also finds 

that Tmax has negative effects on almost all phases of rice growth, which 

is in accordance with those suggested in the agronomic studies 

(Wassmann et al., 2009a; Singh et al., 2010). This could be in view that 

in several regions in India temperature (especially daytime temperature) 

is already approaching critical levels during important rice growth phases 

(Wassmann et al., 2009b).  
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